This example is used to demonstrate how to quantize a TensorFlow checkpoint and run with a dummy dataloader.
-
Download the FP32 model
git clone https://github.com/openvinotoolkit/open_model_zoo.git python ./open_model_zoo/tools/downloader/downloader.py --name rfcn-resnet101-coco-tf --output_dir model
-
Run quantization We will create a dummy dataloader and only need to add the following lines for quantization to create an int8 model.
quantizer = Quantization('./conf.yaml') dataset = quantizer.dataset('dummy_v2', \ input_shape=(100, 100, 3), label_shape=(1, )) quantizer.model = common.Model('./model/public/rfcn-resnet101-coco-tf/rfcn_resnet101_coco_2018_01_28/') quantizer.calib_dataloader = common.DataLoader(dataset) quantized_model = quantizer()
- Run quantization and evaluation:
python test.py