-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdecode-sse.cpp
1317 lines (1152 loc) · 46.9 KB
/
decode-sse.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// PTLsim: Cycle Accurate x86-64 Simulator
// Decoder for SSE/SSE2/SSE3/MMX and misc instructions
//
// Copyright 1999-2008 Matt T. Yourst <yourst@yourst.com>
//
#include <decode.h>
static const byte sse_float_datatype_to_ptl_datatype[4] = {DATATYPE_FLOAT, DATATYPE_VEC_FLOAT, DATATYPE_DOUBLE, DATATYPE_VEC_DOUBLE};
bool TraceDecoder::decode_sse() {
DecodedOperand rd;
DecodedOperand ra;
is_sse = 1;
prefixes &= ~PFX_LOCK;
switch (op) {
/*
0x2xx 0xf3 OPss
0x3xx none OPps
0x4xx 0xf2 OPsd
0x5xx 0x66 OPpd
*/
//
// SSE Arithmetic
//
// 0x2xx = XXXss:
case 0x251: // sqrt
case 0x252: // rsqrt
case 0x253: // rcp
//case 0x254: // and (scalar version does not exist)
//case 0x255: // andn
//case 0x256: // or
//case 0x257: // xor
case 0x258: // add
case 0x259: // mul
// 0x25a, 0x25b are conversions with different form
case 0x25c: // sub
case 0x25d: // min
case 0x25e: // div
case 0x25f: // max
case 0x2c2: // cmp (has imm byte at end for compare type)
// 0x3xx = XXXps
case 0x351: // sqrt
case 0x352: // rsqrt
case 0x353: // rcp
case 0x354: // and
case 0x355: // andn
case 0x356: // or
case 0x357: // xor
case 0x358: // add
case 0x359: // mul
// 0x35a, 0x25b are conversions with different form
case 0x35c: // sub
case 0x35d: // min
case 0x35e: // div
case 0x35f: // max
case 0x3c2: // cmp (has imm byte at end for compare type)
// 0x4xx = XXXsd
case 0x451: // sqrt
case 0x452: // rsqrt
case 0x453: // rcp
//case 0x454: // and (scalar version does not exist)
//case 0x455: // andn
//case 0x456: // or
//case 0x457: // xor
case 0x458: // add
case 0x459: // mul
// 0x45a, 0x25b are conversions with different form
case 0x45c: // sub
case 0x45d: // min
case 0x45e: // div
case 0x45f: // max
case 0x4c2: // cmp (has imm byte at end for compare type)
// 0x5xx = XXXpd
case 0x551: // sqrt
case 0x552: // rsqrt
case 0x553: // rcp
case 0x554: // and
case 0x555: // andn
case 0x556: // or
case 0x557: // xor
case 0x558: // add
case 0x559: // mul
// 0x55a, 0x25b are conversions with different form
case 0x55c: // sub
case 0x55d: // min
case 0x55e: // div
case 0x55f:
case 0x5c2: { // cmp (has imm byte at end for compare type)
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
bool cmp = (lowbits(op, 8) == 0xc2);
DecodedOperand imm;
imm.imm.imm = 0;
if (cmp) {
// cmpXX has imm8 at end to specify 3 bits of compare type:
DECODE(iform, imm, b_mode);
}
EndOfDecode();
int destreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
// XXXss: 0x2xx 00
// XXXps: 0x3xx 01
// XXXsd: 0x4xx 10
// XXXpd: 0x5xx 11
byte sizetype = (op >> 8) - 2; // put into 0x{2-5}00 -> 2-5 range, then set to 0-3 range
bool packed = bit(sizetype, 0);
bool dp = bit(sizetype, 1);
static const byte opcode_to_uop[16] = {OP_nop, OP_fsqrt, OP_frsqrt, OP_frcp, OP_and, OP_andnot, OP_or, OP_xor, OP_fadd, OP_fmul, OP_nop, OP_nop, OP_fsub, OP_fmin, OP_fdiv, OP_fmax};
int uop = (lowbits(op, 8) == 0xc2) ? OP_fcmp : opcode_to_uop[lowbits(op, 4)];
int datatype = sse_float_datatype_to_ptl_datatype[sizetype];
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg = rdreg;
int rbreg;
if (ra.type == OPTYPE_MEM) {
rbreg = REG_temp0;
//
// For "ss" (32-bit single-precision scalar) datatype,
// make sure it's a ldd (32-bit load); otherwise we'll
// get unnecessary unaligned faults.
//
if ((op >> 8) == 0x2) ra.mem.size = 2;
if (packed) {
operand_load(REG_temp0, ra, OP_ld_a16, datatype);
ra.mem.offset += 8;
operand_load(REG_temp1, ra, OP_ld, datatype);
} else {
operand_load(REG_temp0, ra, OP_ld, datatype);
}
} else {
rbreg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
// Special case dependency chain breaker: xorXX A,A => xorXX zero,zero
if unlikely ((uop == OP_xor) && (ra.type == OPTYPE_REG) && (rdreg == rbreg) && packed) {
this << TransOp(OP_xor, rdreg+0, REG_zero, REG_zero, REG_zero, 3);
this << TransOp(OP_xor, rdreg+1, REG_zero, REG_zero, REG_zero, 3);
break;
}
TransOp lowop(uop, rdreg+0, rareg+0, rbreg+0, REG_zero, isclass(uop, OPCLASS_LOGIC) ? 3 : sizetype);
lowop.cond = imm.imm.imm;
lowop.datatype = datatype;
this << lowop;
if (packed) {
TransOp highop(uop, rdreg+1, rareg+1, rbreg+1, REG_zero, isclass(uop, OPCLASS_LOGIC) ? 3 : sizetype);
highop.cond = imm.imm.imm;
highop.datatype = datatype;
this << highop;
}
break;
}
//
// Integer SSE Arithmetic
//
// 0 1 2 3 4 5 6 7 8 9 a b c d e f
// 0x5d0: -------- psrlw psrld psrlq paddq pmullw movq pmovmskb psubusb psubusw pminub pand paddusb paddusw pmaxub pandn
// 0x5e0: pavgb psraw psrad pavgw pmulhuw pmulhw cvttpd2dq movntdq psubsb psubsw pminsw por paddsb paddsw pmaxsw pxor
// 0x5f0: -------- psllw pslld psllq pmuludq pmaddwd psadbw maskmovdqu psubb psubw psubd psubq paddb paddw paddd --------
//
case 0x5d1 ... 0x5d5:
case 0x5d8 ... 0x5df:
case 0x5e0 ... 0x5e5:
case 0x5e8 ... 0x5ef:
case 0x5f1 ... 0x5f6:
case 0x5f8 ... 0x5fe: {
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
static const byte x86_opcode_to_ptl_opcode[3][16] = {
// 0x5d0:
// 0 1 2 3 4 5 6 7 8 9 a b c d e f
// -------- psrlw psrld psrlq paddq pmullw movq pmovmskb psubusb psubusw pminub pand paddusb paddusw pmaxub pandn
{0, OP_vshr, OP_vshr, OP_vshr, OP_vadd, OP_vmull, 0, 0, OP_vsub_us, OP_vsub_us, OP_vmin, OP_and, OP_vadd_us, OP_vadd_us, OP_vmax, OP_andnot},
// 0x5e0:
// pavgb psraw psrad pavgw pmulhuw pmulhw cvttpd2dq movntdq psubsb psubsw pminsw por paddsb paddsw pmaxsw pxor
{OP_vavg, OP_vsar, OP_vsar, OP_vavg, OP_vmulhu, OP_vmulh, 0, 0, OP_vsub_ss, OP_vsub_ss, OP_vmin_s, OP_or, OP_vadd_ss, OP_vadd_ss, OP_vmax_s, OP_xor},
// 0x5f0:
// -------- psllw pslld psllq pmuludq pmaddwd psadbw maskmovdqu psubb psubw psubd psubq paddb paddw paddd --------
{0, OP_vshl, OP_vshl, OP_vshl, OP_mulhl, OP_vmaddp,OP_vsad, 0, OP_vsub, OP_vsub, OP_vsub, OP_vsub, OP_vadd, OP_vadd, OP_vadd, 0},
};
#define B 0
#define W 1
#define D 2
#define Q 3
static const byte x86_opcode_to_sizeshift[3][16] = {
// 0x5d0:
// 0 1 2 3 4 5 6 7 8 9 a b c d e f
// -------- psrlw psrld psrlq paddq pmullw movq pmovmskb psubusb psubusw pminub pand paddusb paddusw pmaxub pandn
{0, W, D, Q, Q, W, Q, B, B, W, B, Q, B, W, B, Q},
// 0x5e0:
// pavgb psraw psrad pavgw pmulhuw pmulhw cvttpd2dq movntdq psubsb psubsw pminsw por paddsb paddsw pmaxsw pxor
{B, W, D, W, W, W, 0, 0, B, W, W, Q, B, W, W, Q},
// 0x5f0:
// -------- psllw pslld psllq pmuludq pmaddwd psadbw maskmovdqu psubb psubw psubd psubq paddb paddw paddd --------
{0, W, D, Q, D, W, W, 0, B, W, D, Q, B, W, D, 0},
};
#undef B
#undef W
#undef D
#undef Q
int uop = x86_opcode_to_ptl_opcode[bits(op, 4, 4) - 0xd][lowbits(op, 4)];
int sizeshift = x86_opcode_to_sizeshift[bits(op, 4, 4) - 0xd][lowbits(op, 4)];
assert(uop != OP_nop);
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
rareg = REG_temp0;
operand_load(REG_temp0, ra, OP_ld_a16, DATATYPE_VEC_128BIT);
ra.mem.offset += 8;
operand_load(REG_temp1, ra, OP_ld, DATATYPE_VEC_128BIT);
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
// Special case dependency chain breaker: xorXX A,A => xorXX zero,zero
if unlikely ((uop == OP_xor) && (ra.type == OPTYPE_REG) && (rdreg == rareg)) {
this << TransOp(OP_xor, rdreg+0, REG_zero, REG_zero, REG_zero, 3);
this << TransOp(OP_xor, rdreg+1, REG_zero, REG_zero, REG_zero, 3);
break;
}
bool isshift = (uop == OP_vshr) | (uop == OP_vsar) | (uop == OP_vshl);
this << TransOp(uop, rdreg+0, rdreg+0, rareg+0, REG_zero, sizeshift);
this << TransOp(uop, rdreg+1, rdreg+1, rareg+(!isshift), REG_zero, sizeshift);
break;
}
case 0x5d7: // pmovmskb
case 0x550: // movmskpd
case 0x350: { // movmskps
DECODE(gform, rd, d_mode);
DECODE(eform, ra, x_mode);
if (ra.type == OPTYPE_MEM) MakeInvalid();
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
W64 maskctl =
(op == 0x5d7) ? MaskControlInfo(56, 8, 56) : // pmovmskb (16-bit mask)
(op == 0x350) ? MaskControlInfo(62, 2, 62) : // movmskps (4-bit mask)
(op == 0x550) ? MaskControlInfo(63, 1, 63) : // movmskpd (2-bit mask)
MaskControlInfo(0);
int sizeshift =
(op == 0x5d7) ? 0 : // pmovmskb (16-bit mask)
(op == 0x350) ? 2 : // movmskps (4-bit mask)
(op == 0x550) ? 3 : 0; // movmskpd (2-bit mask)
int highbit = ((1 << sizeshift)*8)-1;
this << TransOp(OP_vbt, REG_temp0, rareg+0, REG_imm, REG_zero, sizeshift, highbit);
this << TransOp(OP_vbt, REG_temp1, rareg+1, REG_imm, REG_zero, sizeshift, highbit);
this << TransOp(OP_maskb, rdreg, REG_temp0, REG_temp1, REG_imm, 3, 0, maskctl);
break;
}
case 0x564 ... 0x566: // pcmpgtX
case 0x574 ... 0x576: { // pcmpeqX
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int cond = (bits(op, 4, 4) == 0x6) ? COND_nle : COND_e;
int sizeshift = lowbits(op, 2);
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
rareg = REG_temp0;
operand_load(REG_temp0, ra, OP_ld_a16, DATATYPE_VEC_128BIT);
ra.mem.offset += 8;
operand_load(REG_temp1, ra, OP_ld, DATATYPE_VEC_128BIT);
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
TransOp lo(OP_vcmp, rdreg+0, rdreg+0, rareg+0, REG_zero, sizeshift);
lo.cond = cond; this << lo;
TransOp hi(OP_vcmp, rdreg+1, rdreg+1, rareg+1, REG_zero, sizeshift);
hi.cond = cond; this << hi;
break;
}
case 0x571: // psxxw imm8
case 0x572: // psxxd imm8
case 0x573: { // psxxq imm8 or psrldq|pslldq imm8 (byte count)
DECODE(eform, rd, x_mode);
DECODE(iform, ra, b_mode);
if (rd.type == OPTYPE_MEM) MakeInvalid();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int imm = ra.imm.imm;
if unlikely ((op == 0x573) && (lowbits(modrm.reg, 2) == 3)) {
EndOfDecode();
//
// pslldq: (left)
//
// lo = 65432107 rotl t0 = lo,(imm*8)
// hi = edcba987 maskb hi = t0,hi,[ms=(8-imm)*8 mc=(8-imm)*8 ds=(8-imm)*8]
// lo = 65432100 shl lo = lo,(imm*8)
//
// psrldq: (right)
//
// t0 = 8fedcba9 rotr t0 = hi,imm*8
// lo = 87654321 maskb lo = t0,lo,[ms=0 mc=(8-imm)*8 ds=imm*8]
// hi = 0fedcba9 shr hi = hi,imm*8
//
int opcode = (bit(modrm.reg, 2)) ? OP_shl : OP_shr;
bool right = (opcode == OP_shr);
bool left = (opcode != OP_shr);
if unlikely (!imm) {
this << TransOp(OP_nop, REG_temp0, REG_zero, REG_zero, REG_zero, 3);
} else if likely (imm < 8) {
if (left) {
this << TransOp(OP_rotl, REG_temp0, rdreg+0, REG_imm, REG_zero, 3, imm*8);
this << TransOp(OP_maskb, rdreg+1, REG_temp0, rdreg+1, REG_imm, 3, 0, MaskControlInfo((8-imm)*8, (8-imm)*8, (8-imm)*8));
this << TransOp(OP_shl, rdreg+0, rdreg+0, REG_imm, REG_zero, 3, (imm*8));
} else {
this << TransOp(OP_rotr, REG_temp0, rdreg+1, REG_imm, REG_zero, 3, imm*8);
this << TransOp(OP_maskb, rdreg+0, REG_temp0, rdreg+0, REG_imm, 3, 0, MaskControlInfo(0, (8-imm)*8, imm*8));
this << TransOp(OP_shr, rdreg+1, rdreg+1, REG_imm, REG_zero, 3, (imm*8));
}
} else if likely (imm < 16) {
// imm >= 8
//
// psrldq: (right = 1, left = 0)
//
// lo = >> shr lo = hi,(imm & 0x7)*8
// hi = 0 mov hi = 0,0
//
// pslldq: (right = 0, left = 1)
//
// hi = << shl hi = lo,(imm & 0x7)*8
// lo = 0 mov lo = 0,0
//
this << TransOp(opcode, rdreg+left, rdreg+right, REG_imm, REG_zero, 3, (imm & 7) * 8);
this << TransOp(OP_mov, rdreg+right, REG_zero, REG_zero, REG_zero, 3);
} else {
// all zeros
this << TransOp(OP_mov, rdreg+0, REG_zero, REG_zero, REG_zero, 3);
this << TransOp(OP_mov, rdreg+1, REG_zero, REG_zero, REG_zero, 3);
}
} else {
// psxxw psxxd psxxq
static const int modrm_reg_to_opcode[8] = {0, 0, OP_vshr, 0, OP_vsar, 0, OP_vshl, 0};
int opcode = modrm_reg_to_opcode[modrm.reg];
int sizeshift = lowbits(op, 2); // 0x57x = {0, 1, 2, 3}
if (!opcode) MakeInvalid();
EndOfDecode();
int maximm = (1 << sizeshift)*8;
if unlikely (imm >= maximm) {
// NOTE: for psraX, we must propagate the sign bit instead of zero
if unlikely (opcode == OP_vsar) {
TransOp lo(OP_vcmp, rdreg+0, rdreg+0, REG_zero, REG_zero, sizeshift); lo.cond = COND_s; this << lo;
TransOp hi(OP_vcmp, rdreg+1, rdreg+1, REG_zero, REG_zero, sizeshift); hi.cond = COND_s; this << hi;
} else {
this << TransOp(OP_mov, rdreg+0, REG_zero, REG_zero, REG_zero, 3);
this << TransOp(OP_mov, rdreg+1, REG_zero, REG_zero, REG_zero, 3);
}
} else {
this << TransOp(opcode, rdreg+0, rdreg+0, REG_imm, REG_zero, sizeshift, imm);
this << TransOp(opcode, rdreg+1, rdreg+1, REG_imm, REG_zero, sizeshift, imm);
}
}
break;
}
case 0x560: // punpcklbw
case 0x561: // punpcklwd
case 0x562: // punpckldq
case 0x563: // packsswb
case 0x567: // packuswb
case 0x568: // punpckhbw
case 0x569: // punpckhwd
case 0x56a: // punpckhdq
case 0x56b: // packssdw
case 0x56c: // punpcklqdq
case 0x56d: { // punpckhqdq
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
static const byte x86_opcode_to_ptl_opcode[16] = {
// 0x56x:
// 0 1 2 3 4 5 6 7 8 9 a b c d e f
// punpcklbw punpcklwd punpckldq packsswb pcmpgtb pcmpgtw pcmpgtd packuswb punpckhbw punpckhwd punpckhdq packssdw punpcklqdq punpckhqdq movd movdqa
OP_permb, OP_permb, OP_permb, OP_vpack_ss,0, 0, 0, OP_vpack_us,OP_permb, OP_permb, OP_permb, OP_vpack_ss,OP_permb, OP_permb, 0, 0,
};
#define B 0
#define W 1
#define D 2
#define Q 3
static const byte x86_opcode_to_sizeshift[16] = {
// 0x56x:
// 0 1 2 3 4 5 6 7 8 9 a b c d e f
// punpcklbw punpcklwd punpckldq packsswb pcmpgtb pcmpgtw pcmpgtd packuswb punpckhbw punpckhwd punpckhdq packssdw punpcklqdq punpckhqdq movd movdqa
Q, Q, Q, B, 0, 0, 0, B, Q, Q, Q, W, Q, Q, 0, 0,
};
#undef B
#undef W
#undef D
#undef Q
enum { d0, d1, d2, d3, d4, d5, d6, d7, a0, a1, a2, a3, a4, a5, a6, a7 };
static const W32 permute_control_info[16][2] = { // (hi, lo):
{MakePermuteControlInfo(a7, d7, a6, d6, a5, d5, a4, d4), MakePermuteControlInfo(a3, d3, a2, d2, a1, d1, a0, d0)}, // punpcklbw
{MakePermuteControlInfo(a7, a6, d7, d6, a5, a4, d5, d4), MakePermuteControlInfo(a3, a2, d3, d2, a1, a0, d1, d0)}, // punpcklwd
{MakePermuteControlInfo(a7, a6, a5, a4, d7, d6, d5, d4), MakePermuteControlInfo(a3, a2, a1, a0, d3, d2, d1, d0)}, // punpckldq
{0, 0, }, // packsswb
{0, 0, }, // cmpgtb
{0, 0, }, // cmpgtw
{0, 0, }, // cmpgtd
{0, 0, }, // packuswb
{MakePermuteControlInfo(a7, d7, a6, d6, a5, d5, a4, d4), MakePermuteControlInfo(a3, d3, a2, d2, a1, d1, a0, d0)}, // punpckhbw
{MakePermuteControlInfo(a7, a6, d7, d6, a5, a4, d5, d4), MakePermuteControlInfo(a3, a2, d3, d2, a1, a0, d1, d0)}, // punpckhwd
{MakePermuteControlInfo(a7, a6, a5, a4, d7, d6, d5, d4), MakePermuteControlInfo(a3, a2, a1, a0, d3, d2, d1, d0)}, // punpckhdq
{0, 0, }, // packssdw
{MakePermuteControlInfo(a7, a6, a5, a4, a3, a2, a1, a0), MakePermuteControlInfo(d7, d6, d5, d4, d3, d2, d1, d0)}, // punpcklqdq
{MakePermuteControlInfo(a7, a6, a5, a4, a3, a2, a1, a0), MakePermuteControlInfo(d7, d6, d5, d4, d3, d2, d1, d0)}, // punpckhqdq
{0, 0, }, // movd
{0, 0, }, // movdqa
};
static const byte permute_from_high_quad[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0};
int uop = x86_opcode_to_ptl_opcode[lowbits(op, 4)];
int sizeshift = x86_opcode_to_sizeshift[lowbits(op, 4)];
assert(uop != OP_nop);
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
rareg = REG_temp0;
operand_load(REG_temp0, ra, OP_ld_a16, DATATYPE_VEC_128BIT);
ra.mem.offset += 8;
operand_load(REG_temp1, ra, OP_ld, DATATYPE_VEC_128BIT);
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
if unlikely (uop == OP_permb) {
int sel = lowbits(op, 4);
bool hi = permute_from_high_quad[sel];
//
// We may need to write to temporaries since this is a full 1:1 permute.
// For optimal efficiency, the processor should eliminate the mov uops
// using rename table tricks.
//
this << TransOp(OP_permb, REG_temp2, rdreg+hi, rareg+hi, REG_imm, 3, 0, permute_control_info[sel][1]);
this << TransOp(OP_permb, REG_temp3, rdreg+hi, rareg+hi, REG_imm, 3, 0, permute_control_info[sel][0]);
this << TransOp(OP_mov, rdreg+0, REG_zero, REG_temp2, REG_zero, 3);
this << TransOp(OP_mov, rdreg+1, REG_zero, REG_temp3, REG_zero, 3);
} else {
// pack.xx uop
this << TransOp(uop, rdreg+0, rdreg+0, rdreg+1, REG_zero, sizeshift);
this << TransOp(uop, rdreg+1, rareg+0, rareg+1, REG_zero, sizeshift);
}
break;
}
case 0x57c: // haddpd (SSE3)
case 0x57d: { // hsubpd (SSE3)
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
rareg = REG_temp0;
operand_load(REG_temp0, ra, OP_ld_a16, DATATYPE_VEC_DOUBLE);
ra.mem.offset += 8;
operand_load(REG_temp1, ra, OP_ld, DATATYPE_VEC_DOUBLE);
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
int uop = (op == 0x57d) ? OP_fsub : OP_fadd;
TransOp lowop(uop, rdreg+0, rdreg+0, rdreg+1, REG_zero, 3);
lowop.datatype = DATATYPE_VEC_DOUBLE;
this << lowop;
TransOp highop(uop, rdreg+1, rareg+0, rareg+1, REG_zero, 3);
highop.datatype = DATATYPE_VEC_DOUBLE;
this << highop;
break;
}
// case 0x4d0: // addsubps (SSE3) is interleaved
case 0x5d0: { // addsubpd (SSE3)
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
rareg = REG_temp0;
operand_load(REG_temp0, ra, OP_ld_a16, DATATYPE_VEC_DOUBLE);
ra.mem.offset += 8;
operand_load(REG_temp1, ra, OP_ld, DATATYPE_VEC_DOUBLE);
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
this << TransOp(OP_fsub, rdreg+0, rdreg+0, rareg+0, REG_zero, 3);
this << TransOp(OP_fadd, rdreg+1, rdreg+1, rareg+1, REG_zero, 3);
break;
}
case 0x22a: { // cvtsi2ss with W32 or W64 source
DECODE(gform, rd, x_mode);
DECODE(eform, ra, v_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
ra.mem.size = (rex.mode64) ? 3 : 2;
operand_load(REG_temp0, ra, OP_ld);
rareg = REG_temp0;
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
TransOp uop((rex.mode64) ? OP_fcvt_q2s_ins : OP_fcvt_i2s_ins, rdreg, rdreg, rareg, REG_zero, 3);
uop.datatype = DATATYPE_FLOAT;
this << uop;
break;
}
case 0x42a: { // cvtsi2sd with W32 or W64 source
DECODE(gform, rd, x_mode);
DECODE(eform, ra, v_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
ra.mem.size = (rex.mode64) ? 3 : 2;
operand_load(REG_temp0, ra, OP_ld);
rareg = REG_temp0;
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
TransOp uop((rex.mode64) ? OP_fcvt_q2d : OP_fcvt_i2d_lo, rdreg, REG_zero, rareg, REG_zero, 3);
uop.datatype = DATATYPE_DOUBLE;
this << uop;
break;
}
case 0x2e6: // cvtdq2pd
case 0x52a: { // cvtpi2pd
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
ra.mem.size = 3;
operand_load(REG_temp0, ra, OP_ld);
rareg = REG_temp0;
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
if (unlikely (rareg == rdreg)) {
TransOp mov(OP_mov, REG_temp0, REG_zero, rareg, REG_zero, 3);
this << mov;
rareg = REG_temp0;
}
}
TransOp uoplo(OP_fcvt_i2d_lo, rdreg+0, REG_zero, rareg, REG_zero, 3); uoplo.datatype = DATATYPE_VEC_DOUBLE; this << uoplo;
TransOp uophi(OP_fcvt_i2d_hi, rdreg+1, REG_zero, rareg, REG_zero, 3); uophi.datatype = DATATYPE_VEC_DOUBLE; this << uophi;
break;
}
case 0x35b: { // cvtdq2ps
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
operand_load(REG_temp0, ra, OP_ld_a16);
ra.mem.offset += 8;
operand_load(REG_temp1, ra, OP_ld);
rareg = REG_temp0;
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
TransOp uoplo(OP_fcvt_i2s_p, rdreg+0, REG_zero, rareg+0, REG_zero, 3); uoplo.datatype = DATATYPE_VEC_FLOAT; this << uoplo;
TransOp uophi(OP_fcvt_i2s_p, rdreg+1, REG_zero, rareg+1, REG_zero, 3); uophi.datatype = DATATYPE_VEC_FLOAT; this << uophi;
break;
}
case 0x4e6: // cvtpd2dq
case 0x5e6: { // cvttpd2dq
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
operand_load(REG_temp0, ra, OP_ld_a16, DATATYPE_VEC_DOUBLE);
ra.mem.offset += 8;
operand_load(REG_temp1, ra, OP_ld, DATATYPE_VEC_DOUBLE);
rareg = REG_temp0;
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
this << TransOp(OP_fcvt_d2i_p, rdreg+0, rareg+1, rareg+0, REG_zero, ((op >> 8) == 5));
this << TransOp(OP_mov, rdreg+1, REG_zero, REG_zero, REG_zero, 3);
break;
}
// cvtpd2pi has mmx target: skip for now
case 0x55a: { // cvtpd2ps
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
operand_load(REG_temp0, ra, OP_ld_a16, DATATYPE_VEC_DOUBLE);
ra.mem.offset += 8;
operand_load(REG_temp1, ra, OP_ld, DATATYPE_VEC_DOUBLE);
rareg = REG_temp0;
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
TransOp uop(OP_fcvt_d2s_p, rdreg+0, rareg+1, rareg+0, REG_zero, 3); uop.datatype = DATATYPE_VEC_FLOAT; this << uop;
this << TransOp(OP_mov, rdreg+1, REG_zero, REG_zero, REG_zero, 3);
break;
}
case 0x32a: { // cvtpi2ps
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
operand_load(REG_temp0, ra, OP_ld);
ra.mem.offset += 8;
operand_load(REG_temp1, ra, OP_ld);
rareg = REG_temp0;
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
TransOp uop(OP_fcvt_i2s_p, rdreg+0, REG_zero, rareg+0, REG_zero, 3); uop.datatype = DATATYPE_VEC_FLOAT; this << uop;
this << TransOp(OP_mov, rdreg+1, REG_zero, REG_zero, REG_zero, 3);
break;
}
case 0x55b: // cvtps2dq
case 0x25b: { // cvttps2dq
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
operand_load(REG_temp0, ra, OP_ld_a16, DATATYPE_VEC_FLOAT);
ra.mem.offset += 8;
operand_load(REG_temp1, ra, OP_ld, DATATYPE_VEC_FLOAT);
rareg = REG_temp0;
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
this << TransOp(OP_fcvt_s2i_p, rdreg+0, rareg+0, rareg+0, REG_zero, ((op >> 8) == 2));
this << TransOp(OP_fcvt_s2i_p, rdreg+1, rareg+1, rareg+1, REG_zero, ((op >> 8) == 2));
break;
}
// cvtps2pi/cvttps2pi: uses mmx so ignore for now
case 0x42d: // cvtsd2si
case 0x42c: { // cvttsd2si
DECODE(gform, rd, v_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
operand_load(REG_temp0, ra, OP_ld, DATATYPE_DOUBLE);
rareg = REG_temp0;
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
this << TransOp((rex.mode64) ? OP_fcvt_d2q : OP_fcvt_d2i, rdreg, REG_zero, rareg, REG_zero, (lowbits(op, 8) == 0x2c));
break;
}
case 0x22d: // cvtss2si
case 0x22c: { // cvttss2si
DECODE(gform, rd, v_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
ra.mem.size = 2;
operand_load(REG_temp0, ra, OP_ld, DATATYPE_FLOAT);
rareg = REG_temp0;
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
this << TransOp((rex.mode64) ? OP_fcvt_s2q : OP_fcvt_s2i, rdreg, REG_zero, rareg, REG_zero, (lowbits(op, 8) == 0x2c));
break;
}
case 0x25a: { // cvtss2sd
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
ra.mem.size = 2;
operand_load(REG_temp0, ra, OP_ld, DATATYPE_FLOAT);
rareg = REG_temp0;
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
TransOp uop(OP_fcvt_s2d_lo, rdreg, REG_zero, rareg, REG_zero, 3); uop.datatype = DATATYPE_DOUBLE; this << uop;
break;
}
case 0x35a: { // cvtps2pd
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
operand_load(REG_temp0, ra, OP_ld, DATATYPE_FLOAT);
rareg = REG_temp0;
ra.mem.offset += 8;
operand_load(REG_temp1, ra, OP_ld, DATATYPE_FLOAT);
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
if (unlikely (rareg == rdreg)) {
TransOp mov(OP_mov, REG_temp0, REG_zero, rareg, REG_zero, 3);
this << mov;
rareg = REG_temp0;
}
}
TransOp uoplo(OP_fcvt_s2d_lo, rdreg+0, REG_zero, rareg, REG_zero, 3); uoplo.datatype = DATATYPE_VEC_DOUBLE; this << uoplo;
TransOp uophi(OP_fcvt_s2d_hi, rdreg+1, REG_zero, rareg, REG_zero, 3); uophi.datatype = DATATYPE_VEC_DOUBLE; this << uophi;
break;
}
case 0x45a: { // cvtsd2ss
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int rareg;
if (ra.type == OPTYPE_MEM) {
operand_load(REG_temp0, ra, OP_ld, DATATYPE_DOUBLE);
rareg = REG_temp0;
} else {
rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
}
TransOp uop(OP_fcvt_d2s_ins, rdreg, rdreg, rareg, REG_zero, 3); uop.datatype = DATATYPE_FLOAT; this << uop;
break;
}
case 0x328: // movaps load
case 0x528: // movapd load
case 0x310: // movups load
case 0x510: // movupd load
case 0x56f: // movdqa load
case 0x26f: { // movdqu load
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int datatype = sse_float_datatype_to_ptl_datatype[(op >> 8) - 2];
if (ra.type == OPTYPE_MEM) {
bool a16 = op == 0x328 || op == 0x528 || op == 0x56f;
// Load
// This is still idempotent since if the second one was unaligned, the first one must be too
operand_load(rdreg+0, ra, a16 ? OP_ld_a16 : OP_ld, datatype);
ra.mem.offset += 8;
operand_load(rdreg+1, ra, OP_ld, datatype);
} else {
// Move
int rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
TransOp uoplo(OP_mov, rdreg+0, REG_zero, rareg+0, REG_zero, 3); uoplo.datatype = datatype; this << uoplo;
TransOp uophi(OP_mov, rdreg+1, REG_zero, rareg+1, REG_zero, 3); uophi.datatype = datatype; this << uophi;
}
break;
}
case 0x329: // movaps store
case 0x529: // movapd store
case 0x311: // movups store
case 0x511: // movupd store
case 0x57f: // movdqa store
case 0x27f: // movdqu store
case 0x5e7: // movntdq store
case 0x52b: // movntpd store
case 0x32b: { // movntps store
DECODE(eform, rd, x_mode);
DECODE(gform, ra, x_mode);
EndOfDecode();
int rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
int datatype = sse_float_datatype_to_ptl_datatype[(op >> 8) - 2];
if (rd.type == OPTYPE_MEM) {
bool a16 = op == 0x329 || op == 0x529 || op == 0x57f || op == 0x5e7 || op == 0x52b || op == 0x32b;
// Store
// This is still idempotent since if the second one was unaligned, the first one must be too
result_store(rareg+0, REG_temp0, rd, a16 ? OP_st_a16 : OP_st, datatype);
rd.mem.offset += 8;
result_store(rareg+1, REG_temp1, rd, OP_st, datatype);
} else {
// Move
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
TransOp uoplo(OP_mov, rdreg+0, REG_zero, rareg+0, REG_zero, 3); uoplo.datatype = datatype; this << uoplo;
TransOp uophi(OP_mov, rdreg+1, REG_zero, rareg+1, REG_zero, 3); uophi.datatype = datatype; this << uophi;
}
break;
};
case 0x210: // movss load
case 0x410: { // movsd load
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int datatype = sse_float_datatype_to_ptl_datatype[(op >> 8) - 2];
bool isdouble = ((op >> 8) == 0x4);
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
if (ra.type == OPTYPE_MEM) {
// Load
ra.mem.size = (isdouble) ? 3 : 2;
operand_load(rdreg+0, ra, OP_ld, datatype);
TransOp uop(OP_mov, rdreg+1, REG_zero, REG_zero, REG_zero, 3); uop.datatype = datatype; this << uop; // zero high 64 bits
} else {
int rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
// Strange semantics: iff the source operand is a register, insert into low 32 bits only; leave high 32 bits and bits 64-127 alone
if (isdouble) {
TransOp uop(OP_mov, rdreg, REG_zero, rareg, REG_zero, 3); uop.datatype = datatype; this << uop;
} else {
TransOp uop(OP_maskb, rdreg, rdreg, rareg, REG_imm, 3, 0, MaskControlInfo(0, 32, 0)); uop.datatype = datatype; this << uop;
}
}
break;
}
case 0x412: { // movddup (SSE3)
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
EndOfDecode();
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
if (ra.type == OPTYPE_MEM) {
// Load
operand_load(rdreg+0, ra, OP_ld, DATATYPE_VEC_DOUBLE);
this << TransOp(OP_mov, rdreg+1, REG_zero, rdreg+0, REG_zero, 3);
} else {
int rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
this << TransOp(OP_mov, rdreg+0, REG_zero, rareg, REG_zero, 3);
this << TransOp(OP_mov, rdreg+1, REG_zero, rareg, REG_zero, 3);
}
break;
}
case 0x211: // movss store
case 0x411: { // movsd store
DECODE(eform, rd, x_mode);
DECODE(gform, ra, x_mode);
EndOfDecode();
int datatype = sse_float_datatype_to_ptl_datatype[(op >> 8) - 2];
bool isdouble = ((op >> 8) == 0x4);
int rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
if (rd.type == OPTYPE_MEM) {
// Store
rd.mem.size = (isdouble) ? 3 : 2;
result_store(rareg, REG_temp0, rd, OP_st, datatype);
} else {
// Register to register
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
// Strange semantics: iff the source operand is a register, insert into low 32 bits only; leave high 32 bits and bits 64-127 alone
if (isdouble) {
TransOp uop(OP_mov, rdreg, REG_zero, rareg, REG_zero, 3); uop.datatype = datatype; this << uop;
} else {
TransOp uop(OP_maskb, rdreg, rdreg, rareg, REG_imm, 3, 0, MaskControlInfo(0, 32, 0)); uop.datatype = datatype; this << uop;
}
}
break;
}
case 0x5c5: { // pextrw
DECODE(gform, rd, w_mode);
DECODE(eform, ra, x_mode);
DecodedOperand imm;
DECODE(iform, imm, b_mode);
EndOfDecode();
int rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int which = bit(imm.imm.imm, 2);
int shift = lowbits(imm.imm.imm, 3) * 16;
this << TransOp(OP_maskb, rdreg, REG_zero, rareg + which, REG_imm, 3, 0, MaskControlInfo(0, 16, lowbits(shift, 6)));
break;
}
case 0x5c4: { // pinsrw
DECODE(gform, rd, x_mode);
DECODE(eform, ra, w_mode);
DecodedOperand imm;
DECODE(iform, imm, b_mode);
EndOfDecode();
int rareg = arch_pseudo_reg_to_arch_reg[ra.reg.reg];
int rdreg = arch_pseudo_reg_to_arch_reg[rd.reg.reg];
int which = bit(imm.imm.imm, 2);
int shift = lowbits(imm.imm.imm, 3) * 16;
this << TransOp(OP_maskb, rdreg + which, rdreg + which, rareg, REG_imm, 3, 0, MaskControlInfo(64 - shift, 16, 64 - lowbits(shift, 6)));
break;
}
case 0x570: // pshufd
case 0x3c6: { // shufps
DECODE(gform, rd, x_mode);
DECODE(eform, ra, x_mode);
DecodedOperand imm;
DECODE(iform, imm, b_mode);
EndOfDecode();