-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuilding_detection_ensemble.py
284 lines (237 loc) · 10.1 KB
/
building_detection_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import sys
from copy import deepcopy
from pathlib import Path
from typing import Optional
import dill
import numpy as np
from tqdm import tqdm
from qsvm import QSVM
from softmax_qsvm import SoftmaxQSVM
from qboost import QBoost
from adaboost import AdaBoost
from utils import accuracy, confusion_matrix, matthews_corrcoef, f1_score
from building_detection_hpo import get_data
def train_weak_qsvms(
qsvm_params: dict,
x_train: np.ndarray,
y_train: np.ndarray,
S: int,
M: int,
balance_classes: bool,
save: Optional[Path] = None,
load: Optional[Path] = None,
) -> list[QSVM]:
'''
S : int
Number of classifiers.
M : int
Number of samples per subset.
'''
if load is not None:
with open(load, 'rb') as f:
data = dill.load(f) # data = (x_train_subsets, y_train_subsets, qsvm_params, weak_classifiers)
return data
assert np.all(np.isin(y_train, (-1, 1))), 'Targets must be ±1'
assert x_train.shape[0] == y_train.shape[0], 'x_train and y_train have inconsistent sizes'
N = x_train.shape[0]
indices = np.arange(N)
if balance_classes:
c1_indices = indices[y_train == -1]
c2_indices = indices[y_train == 1]
c1_size = M // 2
c2_size = M - c1_size
assert (
c1_size <= c1_indices.shape[0] and c2_size <= c2_indices.shape[0]
), 'Not enough samples to balance classes'
index_sets = []
while len(index_sets) < S:
c1_idx = np.random.choice(c1_indices, c1_size, replace=False)
c2_idx = np.random.choice(c2_indices, c2_size, replace=False)
idx = np.hstack((c1_idx, c2_idx))
np.random.shuffle(idx)
index_sets.append(idx)
else:
disjoint = S * M <= N
if disjoint:
np.random.shuffle(indices)
index_sets = [indices[i : i + M] for n, i in enumerate(range(0, N, M)) if n < S]
else:
index_sets = [np.random.choice(indices, M, replace=False) for _ in range(S)]
assert len(index_sets) == S and all(len(idx) == M for idx in index_sets), '`index_sets` computation failed'
x_train_subsets = [x_train[idx] for idx in index_sets]
y_train_subsets = [y_train[idx] for idx in index_sets]
weak_classifiers = []
failed_anneals = 0
for x, y in tqdm(zip(x_train_subsets, y_train_subsets), total=S):
try:
qsvm = QSVM(**qsvm_params)
qsvm.fit(x, y)
except:
failed_anneals += 1
print(f'Annealing failed. Sampling with steepest descent for the {failed_anneals}th time.')
params = deepcopy(qsvm_params)
params['sampler'] = 'steepest_descent'
qsvm = QSVM(**params)
qsvm.fit(x, y)
weak_classifiers.append(qsvm)
if failed_anneals:
print(f'Failed anneals: {failed_anneals}')
if save is not None:
with open(save, 'wb') as f:
dill.dump((x_train_subsets, y_train_subsets, qsvm_params, weak_classifiers), f)
return x_train_subsets, y_train_subsets, qsvm_params, weak_classifiers
def run_ensembles():
verbose = True
visualize = False
features = ['z', 'normal_variation', 'height_variation', 'log_intensity']
n_train_samples = 10_000
n_valid_samples = 100_000
# _, train_x, train_y, valid_x, valid_y, _, _, _, _ = get_data(
# n_train_samples, n_valid_samples, features, verbose, visualize, DATASET, WORKING_DIR
# )
with open(ENSEMBLE_LOG_DIR / f'dataset_{DATASET}_ts={n_train_samples}_vs={n_valid_samples}.pkl', 'rb') as f:
train_x, train_y, valid_x, valid_y = dill.load(f)
n_train_samples = 5_000
train_x = train_x[:n_train_samples]
train_y = train_y[:n_train_samples]
common_qsvm_params = dict(
kernel='rbf',
sampler='qa_clique',
num_reads=1_000,
normalize=True,
hybrid_time_limit=3,
threshold=0,
threshold_strategy='relative',
optimize_memory=False,
dwave_api_token=None,
fail_to_classical=True,
)
if DATASET == 'kits':
qsvm_params = dict(B=2, P=1, K=4, zeta=0.0, gamma=0.1778279410038923)
elif DATASET == 'downtown':
qsvm_params = dict(B=2, P=2, K=4, zeta=0.4, gamma=1.0)
elif DATASET == 'ptgrey':
qsvm_params = dict(B=2, P=2, K=4, zeta=1.2, gamma=1.7782794100389228)
qsvm_params |= common_qsvm_params
M = 44 # selected such that num_qubo_elements = 4 * 44 = 176 <= 177 = max_clique_size
S = n_train_samples // M
x_train_subsets, y_train_subsets, qsvm_params, weak_classifiers = train_weak_qsvms(
qsvm_params,
train_x,
train_y,
S=S,
M=M,
balance_classes=True,
# save=ENSEMBLE_LOG_DIR / f'weak_classifiers_{DATASET}_ts={n_train_samples}_{S=}_{M=}.pkl',
load=ENSEMBLE_LOG_DIR / f'weak_classifiers_{DATASET}_ts={n_train_samples}_{S=}_{M=}.pkl',
)
###################################################################################################################
# QBoost ##########################################################################################################
###################################################################################################################
qboost_sampler = 'hybrid'
hybrid_time_limit = 6
qboost_common_params = dict(
weak_classifiers=weak_classifiers,
# lbda=(0.0, 2.1, 0.1),
lbda=(0.0, 0.251, 0.05),
num_reads=1_000,
sampler=qboost_sampler,
hybrid_time_limit=hybrid_time_limit,
dwave_api_token=None,
fail_to_classical=True,
)
if DATASET == 'kits':
qboost_params = dict(B=2, P=3, K=5)
elif DATASET == 'downtown':
qboost_params = dict(B=2, P=1, K=8)
elif DATASET == 'ptgrey':
qboost_params = dict(B=2, P=2, K=7)
qboost_params |= qboost_common_params
qboost = QBoost(**qboost_params)
qboost.fit(train_x, train_y)
with open(
ENSEMBLE_LOG_DIR
/ f'qboost_{DATASET}_ts={n_train_samples}_vs=None_sampler={qboost_sampler}_htl={hybrid_time_limit}.pkl',
'wb',
) as f:
dill.dump(qboost, f)
qboost_valid = QBoost(**qboost_params)
qboost_valid.fit(train_x, train_y, valid_x[:n_train_samples], valid_y[:n_train_samples])
with open(
ENSEMBLE_LOG_DIR
/ f'qboost_{DATASET}_ts={n_train_samples}_vs={n_train_samples}_sampler={qboost_sampler}_htl={hybrid_time_limit}.pkl',
'wb',
) as f:
dill.dump(qboost_valid, f)
with open(
ENSEMBLE_LOG_DIR
/ f'qboost_{DATASET}_ts={n_train_samples}_vs=None_sampler={qboost_sampler}_htl={hybrid_time_limit}.pkl',
'rb',
) as f:
qboost = dill.load(f)
with open(
ENSEMBLE_LOG_DIR
/ f'qboost_{DATASET}_ts={n_train_samples}_vs={n_train_samples}_sampler={qboost_sampler}_htl={hybrid_time_limit}.pkl',
'rb',
) as f:
qboost_valid = dill.load(f)
preds = qboost.predict(valid_x)
preds_valid = qboost_valid.predict(valid_x)
cm = confusion_matrix(preds, valid_y)
cm_valid = confusion_matrix(preds_valid, valid_y)
mcc = matthews_corrcoef(cm)
mcc_valid = matthews_corrcoef(cm_valid)
f1 = f1_score(cm)
f1_valid = f1_score(cm_valid)
acc = accuracy(cm)
acc_valid = accuracy(cm_valid)
print(
f'QBoost:\n\tcm = {cm.tolist()}\n\t{mcc = :.3f} ({mcc_valid:.3f})\n\t{f1 = :.3f} ({f1_valid:.3f})\n\t{acc = :.2%} ({acc_valid:.2%})'
)
###################################################################################################################
# AdaBoost ########################################################################################################
###################################################################################################################
adaboost_common_params = dict(weak_classifiers=weak_classifiers)
if DATASET == 'kits':
adabost_params = dict(n_estimators=64)
elif DATASET == 'downtown':
adabost_params = dict(n_estimators=22)
elif DATASET == 'ptgrey':
adabost_params = dict(n_estimators=30)
adabost_params |= adaboost_common_params
adaboost = AdaBoost(**adabost_params)
adaboost.fit(train_x, train_y)
with open(ENSEMBLE_LOG_DIR / f'adaboost_{DATASET}_ts={n_train_samples}.pkl', 'wb') as f:
dill.dump(adaboost, f)
with open(ENSEMBLE_LOG_DIR / f'adaboost_{DATASET}_ts={n_train_samples}.pkl', 'rb') as f:
adaboost = dill.load(f)
preds = adaboost.predict(valid_x)
cm = confusion_matrix(preds, valid_y)
mcc = matthews_corrcoef(cm)
f1 = f1_score(cm)
acc = accuracy(cm)
print(f'AdaBoost:\n\tcm = {cm.tolist()}\n\t{mcc = :.3f}\n\t{f1 = :.3f}\n\t{acc = :.2%}')
###################################################################################################################
# Softmax QSVM ####################################################################################################
###################################################################################################################
softmax_qsvm_common_params = dict(weak_classifiers=weak_classifiers, multiplier=10.0)
softmax_params = {}
softmax_params |= softmax_qsvm_common_params
softmax_qsvm = SoftmaxQSVM(**softmax_params)
softmax_qsvm.fit(train_x, train_y)
with open(ENSEMBLE_LOG_DIR / f'softmax_qsvm_{DATASET}_ts={n_train_samples}.pkl', 'wb') as f:
dill.dump(softmax_qsvm, f)
with open(ENSEMBLE_LOG_DIR / f'softmax_qsvm_{DATASET}_ts={n_train_samples}.pkl', 'rb') as f:
softmax_qsvm = dill.load(f)
preds = softmax_qsvm.predict(valid_x)
cm = confusion_matrix(preds, valid_y)
mcc = matthews_corrcoef(cm)
f1 = f1_score(cm)
acc = accuracy(cm)
print(f'Softmax QSVM:\n\tcm = {cm.tolist()}\n\t{mcc = :.3f}\n\t{f1 = :.3f}\n\t{acc = :.2%}')
if __name__ == '__main__':
DATASET = sys.argv[1] if len(sys.argv) > 1 else None
assert DATASET is None or DATASET in ('kits', 'downtown', 'ptgrey')
WORKING_DIR = Path(__file__).parent
ENSEMBLE_LOG_DIR = WORKING_DIR / 'logs' / 'ensemble_logs'
run_ensembles()