-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_eccentric_emulators.py
198 lines (168 loc) · 5.99 KB
/
make_eccentric_emulators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
from dataset import recast_eccentricity_dimensions_in_polar
from eccentric_configuration import (
COORDINATE_NAMES,
COORDINATE_NAMES_FOR_GRID,
COORDINATE_PRINT_NAMES,
GPR_KWARGS,
MAXIMUM_ECCENTRICITY,
TEST_METRIC_FILEPATH,
TRAINING_METRIC_FILEPATH,
USE_POLAR,
)
from emulator import build_emulator
from plotting_customizations import (
cmap_habitability,
cmap_precipitation,
cmap_temperature,
)
from plotting_functions import plot_grid_of_grids
from xarray import Dataset, concat, load_dataset
NUMBER_OF_ROWS = 5
NUMBER_OF_COLUMNS = 5
GRID_RESOLUTION = 100
def get_eccentric_coordinates_as_dict(
eccentric_metrics, coordinate_names=COORDINATE_NAMES
):
return {
coordinate_name: eccentric_metrics[coordinate_name].to_numpy()
for coordinate_name in coordinate_names
}
def build_eccentric_emulator(
eccentric_metrics, emulated_variable_name, use_polar, **GPR_kwargs
):
eccentric_coordinates = get_eccentric_coordinates_as_dict(eccentric_metrics)
emulator = build_emulator(
dimensions=eccentric_coordinates,
emulated_variable=eccentric_metrics.get(emulated_variable_name).to_numpy(),
use_polar=use_polar,
**GPR_kwargs,
)
print(f"{emulated_variable_name}: {emulator.regressor.kernel_=}")
return emulator
def build_eccentric_emulators(
eccentric_metrics, emulated_variable_names, use_polar, **GPR_kwargs
):
return [
build_eccentric_emulator(
eccentric_metrics, emulated_variable_name, use_polar, **GPR_kwargs
)
for emulated_variable_name in emulated_variable_names
]
def plot_emulated_grid(
fT_emulator,
fprec_emulator,
habitability_emulator,
grid_dimensions,
filename_suffix,
grid_resolution=GRID_RESOLUTION,
):
dimension_bounds = {
dimension_name: [np.min(dimension), np.max(dimension)]
for dimension_name, dimension in grid_dimensions.items()
}
if "ecc_cos_lon" in dimension_bounds and "ecc_sin_lon" in dimension_bounds:
eccentricity_bounds = [-MAXIMUM_ECCENTRICITY, MAXIMUM_ECCENTRICITY]
dimension_bounds["ecc_cos_lon"] = eccentricity_bounds
dimension_bounds["ecc_sin_lon"] = eccentricity_bounds
grid_spacings = {
dimension_name: np.linspace(*dimension_bound, num=grid_resolution)
for dimension_name, dimension_bound in dimension_bounds.items()
}
eccentric_shared_grid_kwargs = dict(
dimensions=grid_dimensions,
plotted_dimension_names=COORDINATE_NAMES_FOR_GRID[
:2
], # rotation period, obliquity
plotted_print_labels=COORDINATE_PRINT_NAMES[:2],
fixed_dimension_names=COORDINATE_NAMES_FOR_GRID[
2:
], # e cos phi, e sin phi OR eccentricity, longitude at periapse
fixed_print_labels=COORDINATE_PRINT_NAMES[2:],
grid_spacings=grid_spacings,
subplot_kwargs={
"nrows": NUMBER_OF_ROWS,
"ncols": NUMBER_OF_COLUMNS,
"figsize": (3 * NUMBER_OF_ROWS, 3 * NUMBER_OF_COLUMNS),
},
)
eccentric_fT_grid_kwargs = dict(
emulator=fT_emulator,
actual_values=fT_emulator.emulated,
emulated_print_name=r"$f_\mathrm{T}$",
emulated_save_name=f"fT_{filename_suffix}",
colormap=cmap_temperature,
)
eccentric_fprec_grid_kwargs = dict(
emulator=fprec_emulator,
actual_values=fprec_emulator.emulated,
emulated_print_name=r"$f_\mathrm{prec}$",
emulated_save_name=f"fprec_{filename_suffix}",
colormap=cmap_precipitation,
)
eccentric_habitability_grid_kwargs = dict(
emulator=habitability_emulator,
actual_values=habitability_emulator.emulated,
emulated_print_name="Habitability",
emulated_save_name=f"habitability_{filename_suffix}",
colormap=cmap_habitability,
)
eccentric_grid_kwargs = [
eccentric_fT_grid_kwargs,
eccentric_fprec_grid_kwargs,
eccentric_habitability_grid_kwargs,
]
contour_kwargs = dict(levels=0.1 * np.arange(0, 11))
scatter_kwargs = dict(vmin=0, vmax=1)
for grid_kwargs in eccentric_grid_kwargs:
fig, axes = plot_grid_of_grids(
**eccentric_shared_grid_kwargs,
**grid_kwargs,
contour_kwargs=contour_kwargs,
scatter_kwargs=scatter_kwargs,
)
errors_fig, errors_axes = plot_grid_of_grids(
**eccentric_shared_grid_kwargs,
**grid_kwargs,
plot_errors=True,
scatter_kwargs=scatter_kwargs,
)
return fig, axes, errors_fig, errors_axes
def make_eccentric_emulators_and_plot(
eccentric_metrics: Dataset,
filename_suffix: str,
emulated_variable_names: list[str],
use_polar: bool = USE_POLAR,
):
eccentric_coordinates = get_eccentric_coordinates_as_dict(eccentric_metrics)
eccentric_coordinates_for_grid = (
recast_eccentricity_dimensions_in_polar(eccentric_coordinates)
if use_polar
else eccentric_coordinates
)
return plot_emulated_grid(
*build_eccentric_emulators(
eccentric_metrics, emulated_variable_names, use_polar, **GPR_KWARGS
),
eccentric_coordinates_for_grid,
filename_suffix,
)
def run_for_training_and_all_metrics(
emulated_variable_names: list[str] = ["fT_land", "fprec_land", "habitability_land"],
):
training_metrics = load_dataset(TRAINING_METRIC_FILEPATH)
test_metrics = load_dataset(TEST_METRIC_FILEPATH)
all_metrics = concat((training_metrics, test_metrics), dim="case")
all_metrics = all_metrics.sortby(all_metrics.rotation_period)
make_eccentric_emulators_and_plot(
training_metrics,
filename_suffix="training",
emulated_variable_names=emulated_variable_names,
)
make_eccentric_emulators_and_plot(
all_metrics,
filename_suffix="all",
emulated_variable_names=emulated_variable_names,
)
if __name__ == "__main__":
run_for_training_and_all_metrics()