-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathThermalConductivity.hpp
284 lines (235 loc) · 12.6 KB
/
ThermalConductivity.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// Copyright © 2020-2024 Alexandre Coderre-Chabot
//
// This file is part of Physical Quantities (PhQ), a C++ library of physical quantities, physical
// models, and units of measure for scientific computing.
//
// Physical Quantities is hosted at:
// https://github.com/acodcha/phq
//
// Physical Quantities is licensed under the MIT License:
// https://mit-license.org
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
// associated documentation files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify, merge, publish, distribute,
// sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// - The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// - THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
// BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef PHQ_THERMAL_CONDUCTIVITY_HPP
#define PHQ_THERMAL_CONDUCTIVITY_HPP
#include <array>
#include <cstddef>
#include <functional>
#include <ostream>
#include "DimensionalSymmetricDyad.hpp"
#include "ScalarThermalConductivity.hpp"
#include "SymmetricDyad.hpp"
#include "Unit/ThermalConductivity.hpp"
namespace PhQ {
/// \brief Three-dimensional Euclidean Cauchy thermal conductivity symmetric dyadic tensor. Contains
/// six components in Cartesian coordinates: xx, xy = yx, xz = zx, yy, yz = zy, and zz. In general,
/// thermal conductivity is a tensor; however, in isotropic materials, thermal conductivity
/// simplifies to a scalar. For the scalar components or resultants of a thermal conductivity
/// tensor, see PhQ::ScalarThermalConductivity.
template <typename NumericType = double>
class ThermalConductivity
: public DimensionalSymmetricDyad<Unit::ThermalConductivity, NumericType> {
public:
/// \brief Default constructor. Constructs a thermal conductivity tensor with an uninitialized
/// value.
ThermalConductivity() = default;
/// \brief Constructor. Constructs a thermal conductivity tensor with a given value expressed in a
/// given thermal conductivity unit.
ThermalConductivity(const SymmetricDyad<NumericType>& value, const Unit::ThermalConductivity unit)
: DimensionalSymmetricDyad<Unit::ThermalConductivity, NumericType>(value, unit) {}
/// \brief Constructor. Constructs a thermal conductivity tensor from a given scalar thermal
/// conductivity.
explicit constexpr ThermalConductivity(
const ScalarThermalConductivity<NumericType>& scalar_thermal_conductivity)
: ThermalConductivity<NumericType>(
{scalar_thermal_conductivity.Value(), 0.0, 0.0, scalar_thermal_conductivity.Value(), 0.0,
scalar_thermal_conductivity.Value()}) {}
/// \brief Destructor. Destroys this thermal conductivity tensor.
~ThermalConductivity() noexcept = default;
/// \brief Copy constructor. Constructs a thermal conductivity tensor by copying another one.
constexpr ThermalConductivity(const ThermalConductivity<NumericType>& other) = default;
/// \brief Copy constructor. Constructs a thermal conductivity tensor by copying another one.
template <typename OtherNumericType>
explicit constexpr ThermalConductivity(const ThermalConductivity<OtherNumericType>& other)
: ThermalConductivity(static_cast<SymmetricDyad<NumericType>>(other.Value())) {}
/// \brief Move constructor. Constructs a thermal conductivity tensor by moving another one.
constexpr ThermalConductivity(ThermalConductivity<NumericType>&& other) noexcept = default;
/// \brief Copy assignment operator. Assigns this thermal conductivity tensor by copying another
/// one.
constexpr ThermalConductivity<NumericType>& operator=(
const ThermalConductivity<NumericType>& other) = default;
/// \brief Copy assignment operator. Assigns this thermal conductivity tensor by copying another
/// one.
template <typename OtherNumericType>
constexpr ThermalConductivity<NumericType>& operator=(
const ThermalConductivity<OtherNumericType>& other) {
this->value = static_cast<SymmetricDyad<NumericType>>(other.Value());
return *this;
}
/// \brief Move assignment operator. Assigns this thermal conductivity tensor by moving another
/// one.
constexpr ThermalConductivity<NumericType>& operator=(
ThermalConductivity<NumericType>&& other) noexcept = default;
/// \brief Statically creates a thermal conductivity tensor of zero.
[[nodiscard]] static constexpr ThermalConductivity<NumericType> Zero() {
return ThermalConductivity<NumericType>{SymmetricDyad<NumericType>::Zero()};
}
/// \brief Statically creates a thermal conductivity tensor from the given xx, xy, xz, yy, yz, and
/// zz Cartesian components expressed in a given pressure unit.
template <Unit::ThermalConductivity Unit>
[[nodiscard]] static constexpr ThermalConductivity<NumericType> Create(
const NumericType xx, const NumericType xy, const NumericType xz, const NumericType yy,
const NumericType yz, const NumericType zz) {
return ThermalConductivity<NumericType>{
ConvertStatically<Unit::ThermalConductivity, Unit, Standard<Unit::ThermalConductivity>>(
SymmetricDyad<NumericType>{xx, xy, xz, yy, yz, zz})};
}
/// \brief Statically creates a thermal conductivity tensor from the given xx, xy, xz, yy, yz, and
/// zz Cartesian components expressed in a given pressure unit.
template <Unit::ThermalConductivity Unit>
[[nodiscard]] static constexpr ThermalConductivity<NumericType> Create(
const std::array<NumericType, 6>& xx_xy_xz_yy_yz_zz) {
return ThermalConductivity<NumericType>{
ConvertStatically<Unit::ThermalConductivity, Unit, Standard<Unit::ThermalConductivity>>(
SymmetricDyad<NumericType>{xx_xy_xz_yy_yz_zz})};
}
/// \brief Statically creates a thermal conductivity tensor with a given value expressed in a
/// given thermal conductivity unit.
template <Unit::ThermalConductivity Unit>
[[nodiscard]] static constexpr ThermalConductivity<NumericType> Create(
const SymmetricDyad<NumericType>& value) {
return ThermalConductivity<NumericType>{
ConvertStatically<Unit::ThermalConductivity, Unit, Standard<Unit::ThermalConductivity>>(
value)};
}
/// \brief Returns the xx Cartesian component of this thermal conductivity tensor.
[[nodiscard]] constexpr ScalarThermalConductivity<NumericType> xx() const noexcept {
return ScalarThermalConductivity<NumericType>{this->value.xx()};
}
/// \brief Returns the xy = yx Cartesian component of this thermal conductivity tensor.
[[nodiscard]] constexpr ScalarThermalConductivity<NumericType> xy() const noexcept {
return ScalarThermalConductivity<NumericType>{this->value.xy()};
}
/// \brief Returns the xz = zx Cartesian component of this thermal conductivity tensor.
[[nodiscard]] constexpr ScalarThermalConductivity<NumericType> xz() const noexcept {
return ScalarThermalConductivity<NumericType>{this->value.xz()};
}
/// \brief Returns the yx = xy Cartesian component of this thermal conductivity tensor.
[[nodiscard]] constexpr ScalarThermalConductivity<NumericType> yx() const noexcept {
return ScalarThermalConductivity<NumericType>{this->value.yx()};
}
/// \brief Returns the yy Cartesian component of this thermal conductivity tensor.
[[nodiscard]] constexpr ScalarThermalConductivity<NumericType> yy() const noexcept {
return ScalarThermalConductivity<NumericType>{this->value.yy()};
}
/// \brief Returns the yz = zy Cartesian component of this thermal conductivity tensor.
[[nodiscard]] constexpr ScalarThermalConductivity<NumericType> yz() const noexcept {
return ScalarThermalConductivity<NumericType>{this->value.yz()};
}
/// \brief Returns the zx = xz Cartesian component of this thermal conductivity tensor.
[[nodiscard]] constexpr ScalarThermalConductivity<NumericType> zx() const noexcept {
return ScalarThermalConductivity<NumericType>{this->value.zx()};
}
/// \brief Returns the zy = yz Cartesian component of this thermal conductivity tensor.
[[nodiscard]] constexpr ScalarThermalConductivity<NumericType> zy() const noexcept {
return ScalarThermalConductivity<NumericType>{this->value.zy()};
}
/// \brief Returns the zz Cartesian component of this thermal conductivity tensor.
[[nodiscard]] constexpr ScalarThermalConductivity<NumericType> zz() const noexcept {
return ScalarThermalConductivity<NumericType>{this->value.zz()};
}
constexpr ThermalConductivity<NumericType> operator+(
const ThermalConductivity<NumericType>& thermal_conductivity) const {
return ThermalConductivity<NumericType>{this->value + thermal_conductivity.value};
}
constexpr ThermalConductivity<NumericType> operator-(
const ThermalConductivity<NumericType>& thermal_conductivity) const {
return ThermalConductivity<NumericType>{this->value - thermal_conductivity.value};
}
constexpr ThermalConductivity<NumericType> operator*(const NumericType number) const {
return ThermalConductivity<NumericType>{this->value * number};
}
constexpr ThermalConductivity<NumericType> operator/(const NumericType number) const {
return ThermalConductivity<NumericType>{this->value / number};
}
constexpr void operator+=(const ThermalConductivity<NumericType>& thermal_conductivity) noexcept {
this->value += thermal_conductivity.value;
}
constexpr void operator-=(const ThermalConductivity<NumericType>& thermal_conductivity) noexcept {
this->value -= thermal_conductivity.value;
}
constexpr void operator*=(const NumericType number) noexcept {
this->value *= number;
}
constexpr void operator/=(const NumericType number) noexcept {
this->value /= number;
}
private:
/// \brief Constructor. Constructs a thermal conductivity tensor with a given value expressed in
/// the standard thermal conductivity unit.
explicit constexpr ThermalConductivity(const SymmetricDyad<NumericType>& value)
: DimensionalSymmetricDyad<Unit::ThermalConductivity, NumericType>(value) {}
};
template <typename NumericType>
inline constexpr bool operator==(const ThermalConductivity<NumericType>& left,
const ThermalConductivity<NumericType>& right) noexcept {
return left.Value() == right.Value();
}
template <typename NumericType>
inline constexpr bool operator!=(const ThermalConductivity<NumericType>& left,
const ThermalConductivity<NumericType>& right) noexcept {
return left.Value() != right.Value();
}
template <typename NumericType>
inline constexpr bool operator<(const ThermalConductivity<NumericType>& left,
const ThermalConductivity<NumericType>& right) noexcept {
return left.Value() < right.Value();
}
template <typename NumericType>
inline constexpr bool operator>(const ThermalConductivity<NumericType>& left,
const ThermalConductivity<NumericType>& right) noexcept {
return left.Value() > right.Value();
}
template <typename NumericType>
inline constexpr bool operator<=(const ThermalConductivity<NumericType>& left,
const ThermalConductivity<NumericType>& right) noexcept {
return left.Value() <= right.Value();
}
template <typename NumericType>
inline constexpr bool operator>=(const ThermalConductivity<NumericType>& left,
const ThermalConductivity<NumericType>& right) noexcept {
return left.Value() >= right.Value();
}
template <typename NumericType>
inline std::ostream& operator<<(
std::ostream& stream, const ThermalConductivity<NumericType>& thermal_conductivity) {
stream << thermal_conductivity.Print();
return stream;
}
template <typename NumericType>
inline constexpr ThermalConductivity<NumericType> operator*(
const NumericType number, const ThermalConductivity<NumericType>& thermal_conductivity) {
return thermal_conductivity * number;
}
} // namespace PhQ
namespace std {
template <typename NumericType>
struct hash<PhQ::ThermalConductivity<NumericType>> {
inline size_t operator()(
const PhQ::ThermalConductivity<NumericType>& thermal_conductivity) const {
return hash<PhQ::SymmetricDyad<NumericType>>()(thermal_conductivity.Value());
}
};
} // namespace std
#endif // PHQ_THERMAL_CONDUCTIVITY_HPP