|
29 | 29 | <url hash="185096e0">2024.clinicalnlp-1.1</url>
|
30 | 30 | <bibkey>chen-hirschberg-2024-exploring</bibkey>
|
31 | 31 | <doi>10.18653/v1/2024.clinicalnlp-1.1</doi>
|
| 32 | + <video href="2024.clinicalnlp-1.1.mp4"/> |
32 | 33 | </paper>
|
33 | 34 | <paper id="2">
|
34 | 35 | <title>Efficient Medical Question Answering with Knowledge-Augmented Question Generation</title>
|
|
110 | 111 | <url hash="ee12bdf7">2024.clinicalnlp-1.8</url>
|
111 | 112 | <bibkey>burdisso-etal-2024-daic</bibkey>
|
112 | 113 | <doi>10.18653/v1/2024.clinicalnlp-1.8</doi>
|
| 114 | + <video href="2024.clinicalnlp-1.8.mp4"/> |
113 | 115 | </paper>
|
114 | 116 | <paper id="9">
|
115 | 117 | <title>Parameter-Efficient Fine-Tuning of <fixed-case>LL</fixed-case>a<fixed-case>MA</fixed-case> for the Clinical Domain</title>
|
|
134 | 136 | <url hash="328cb574">2024.clinicalnlp-1.10</url>
|
135 | 137 | <bibkey>sanchez-carmona-etal-2024-multilevel</bibkey>
|
136 | 138 | <doi>10.18653/v1/2024.clinicalnlp-1.10</doi>
|
| 139 | + <video href="2024.clinicalnlp-1.10.mp4"/> |
137 | 140 | </paper>
|
138 | 141 | <paper id="11">
|
139 | 142 | <title>A Privacy-Preserving Corpus for Occupational Health in <fixed-case>S</fixed-case>panish: Evaluation for <fixed-case>NER</fixed-case> and Classification Tasks</title>
|
|
150 | 153 | <url hash="70726a1c">2024.clinicalnlp-1.11</url>
|
151 | 154 | <bibkey>aracena-etal-2024-privacy</bibkey>
|
152 | 155 | <doi>10.18653/v1/2024.clinicalnlp-1.11</doi>
|
| 156 | + <video href="2024.clinicalnlp-1.11.mp4"/> |
153 | 157 | </paper>
|
154 | 158 | <paper id="12">
|
155 | 159 | <title><fixed-case>DERA</fixed-case>: Enhancing Large Language Model Completions with Dialog-Enabled Resolving Agents</title>
|
|
162 | 166 | <url hash="651439c4">2024.clinicalnlp-1.12</url>
|
163 | 167 | <bibkey>nair-etal-2024-dera</bibkey>
|
164 | 168 | <doi>10.18653/v1/2024.clinicalnlp-1.12</doi>
|
| 169 | + <video href="2024.clinicalnlp-1.12.mp4"/> |
165 | 170 | </paper>
|
166 | 171 | <paper id="13">
|
167 | 172 | <title><fixed-case>L</fixed-case>lama<fixed-case>MTS</fixed-case>: Optimizing Metastasis Detection with Llama Instruction Tuning and <fixed-case>BERT</fixed-case>-Based Ensemble in <fixed-case>I</fixed-case>talian Clinical Reports</title>
|
|
190 | 195 | <url hash="4147de44">2024.clinicalnlp-1.14</url>
|
191 | 196 | <bibkey>boulanger-etal-2024-using</bibkey>
|
192 | 197 | <doi>10.18653/v1/2024.clinicalnlp-1.14</doi>
|
| 198 | + <video href="2024.clinicalnlp-1.14.mp4"/> |
193 | 199 | </paper>
|
194 | 200 | <paper id="15">
|
195 | 201 | <title>Large Language Models Provide Human-Level Medical Text Snippet Labeling</title>
|
|
229 | 235 | <url hash="1cf18239">2024.clinicalnlp-1.17</url>
|
230 | 236 | <bibkey>mustafa-etal-2024-leveraging</bibkey>
|
231 | 237 | <doi>10.18653/v1/2024.clinicalnlp-1.17</doi>
|
| 238 | + <video href="2024.clinicalnlp-1.17.mp4"/> |
232 | 239 | </paper>
|
233 | 240 | <paper id="18">
|
234 | 241 | <title>Revisiting Clinical Outcome Prediction for <fixed-case>MIMIC</fixed-case>-<fixed-case>IV</fixed-case></title>
|
|
244 | 251 | <url hash="f63ec4b4">2024.clinicalnlp-1.18</url>
|
245 | 252 | <bibkey>rohr-etal-2024-revisiting</bibkey>
|
246 | 253 | <doi>10.18653/v1/2024.clinicalnlp-1.18</doi>
|
| 254 | + <video href="2024.clinicalnlp-1.18.mp4"/> |
247 | 255 | </paper>
|
248 | 256 | <paper id="19">
|
249 | 257 | <title>Can <fixed-case>LLM</fixed-case>s Correct Physicians, Yet? Investigating Effective Interaction Methods in the Medical Domain</title>
|
|
256 | 264 | <url hash="596a859b">2024.clinicalnlp-1.19</url>
|
257 | 265 | <bibkey>sayin-etal-2024-llms</bibkey>
|
258 | 266 | <doi>10.18653/v1/2024.clinicalnlp-1.19</doi>
|
| 267 | + <video href="2024.clinicalnlp-1.19.mp4"/> |
259 | 268 | </paper>
|
260 | 269 | <paper id="20">
|
261 | 270 | <title>Leveraging pre-trained large language models for aphasia detection in <fixed-case>E</fixed-case>nglish and <fixed-case>C</fixed-case>hinese speakers</title>
|
|
267 | 276 | <url hash="5d12c6a4">2024.clinicalnlp-1.20</url>
|
268 | 277 | <bibkey>cong-etal-2024-leveraging</bibkey>
|
269 | 278 | <doi>10.18653/v1/2024.clinicalnlp-1.20</doi>
|
| 279 | + <video href="2024.clinicalnlp-1.20.mp4"/> |
270 | 280 | </paper>
|
271 | 281 | <paper id="21">
|
272 | 282 | <title>Fusion of Domain-Adapted Vision and Language Models for Medical Visual Question Answering</title>
|
|
281 | 291 | <url hash="33a2d27a">2024.clinicalnlp-1.21</url>
|
282 | 292 | <bibkey>ha-etal-2024-fusion</bibkey>
|
283 | 293 | <doi>10.18653/v1/2024.clinicalnlp-1.21</doi>
|
| 294 | + <video href="2024.clinicalnlp-1.21.mp4"/> |
284 | 295 | </paper>
|
285 | 296 | <paper id="22">
|
286 | 297 | <title><fixed-case>LLM</fixed-case>-Based Section Identifiers Excel on Open Source but Stumble in Real World Applications</title>
|
|
305 | 316 | <url hash="8fc233cc">2024.clinicalnlp-1.23</url>
|
306 | 317 | <bibkey>cai-etal-2024-adapting</bibkey>
|
307 | 318 | <doi>10.18653/v1/2024.clinicalnlp-1.23</doi>
|
| 319 | + <video href="2024.clinicalnlp-1.23.mp4"/> |
308 | 320 | </paper>
|
309 | 321 | <paper id="24">
|
310 | 322 | <title><fixed-case>SERPENT</fixed-case>-<fixed-case>VLM</fixed-case> : Self-Refining Radiology Report Generation Using Vision Language Models</title>
|
|
319 | 331 | <url hash="30a316f1">2024.clinicalnlp-1.24</url>
|
320 | 332 | <bibkey>kapadnis-etal-2024-serpent</bibkey>
|
321 | 333 | <doi>10.18653/v1/2024.clinicalnlp-1.24</doi>
|
| 334 | + <video href="2024.clinicalnlp-1.24.mp4"/> |
322 | 335 | </paper>
|
323 | 336 | <paper id="25">
|
324 | 337 | <title><fixed-case>ERD</fixed-case>: A Framework for Improving <fixed-case>LLM</fixed-case> Reasoning for Cognitive Distortion Classification</title>
|
|
351 | 364 | <revision id="1" href="2024.clinicalnlp-1.26v1" hash="10a12469"/>
|
352 | 365 | <revision id="2" href="2024.clinicalnlp-1.26v2" hash="98d9c4fb" date="2024-07-14">Acknowledgments update.</revision>
|
353 | 366 | <doi>10.18653/v1/2024.clinicalnlp-1.26</doi>
|
| 367 | + <video href="2024.clinicalnlp-1.26.mp4"/> |
354 | 368 | </paper>
|
355 | 369 | <paper id="27">
|
356 | 370 | <title>Context Aggregation with Topic-focused Summarization for Personalized Medical Dialogue Generation</title>
|
|
374 | 388 | <url hash="7cd47975">2024.clinicalnlp-1.28</url>
|
375 | 389 | <bibkey>milintsevich-etal-2024-evaluating</bibkey>
|
376 | 390 | <doi>10.18653/v1/2024.clinicalnlp-1.28</doi>
|
| 391 | + <video href="2024.clinicalnlp-1.28.mp4"/> |
377 | 392 | </paper>
|
378 | 393 | <paper id="29">
|
379 | 394 | <title>Semi-automatic Construction of a Word Complexity Lexicon for <fixed-case>J</fixed-case>apanese Medical Terminology</title>
|
|
453 | 468 | <url hash="16d5d762">2024.clinicalnlp-1.35</url>
|
454 | 469 | <bibkey>gundabathula-kolar-2024-promptmind-team</bibkey>
|
455 | 470 | <doi>10.18653/v1/2024.clinicalnlp-1.35</doi>
|
| 471 | + <video href="2024.clinicalnlp-1.35.mp4"/> |
456 | 472 | </paper>
|
457 | 473 | <paper id="36">
|
458 | 474 | <title>Maven at <fixed-case>MEDIQA</fixed-case>-<fixed-case>CORR</fixed-case> 2024: Leveraging <fixed-case>RAG</fixed-case> and Medical <fixed-case>LLM</fixed-case> for Error Detection and Correction in Medical Notes</title>
|
|
478 | 494 | <url hash="7f490b8d">2024.clinicalnlp-1.37</url>
|
479 | 495 | <bibkey>haddadan-etal-2024-lailab</bibkey>
|
480 | 496 | <doi>10.18653/v1/2024.clinicalnlp-1.37</doi>
|
| 497 | + <video href="2024.clinicalnlp-1.37.mp4"/> |
481 | 498 | </paper>
|
482 | 499 | <paper id="38">
|
483 | 500 | <title>Lexicans at Chemotimelines 2024: Chemotimeline Chronicles - Leveraging Large Language Models (<fixed-case>LLM</fixed-case>s) for Temporal Relations Extraction in Oncological Electronic Health Records</title>
|
|
584 | 601 | <url hash="e3fbdb23">2024.clinicalnlp-1.46</url>
|
585 | 602 | <bibkey>pajaro-etal-2024-verbanexai</bibkey>
|
586 | 603 | <doi>10.18653/v1/2024.clinicalnlp-1.46</doi>
|
| 604 | + <video href="2024.clinicalnlp-1.46.mp4"/> |
587 | 605 | </paper>
|
588 | 606 | <paper id="47">
|
589 | 607 | <title><fixed-case>HSE</fixed-case> <fixed-case>NLP</fixed-case> Team at <fixed-case>MEDIQA</fixed-case>-<fixed-case>CORR</fixed-case> 2024 Task: In-Prompt Ensemble with Entities and Knowledge Graph for Medical Error Correction</title>
|
|
675 | 693 | <url hash="a4802ba5">2024.clinicalnlp-1.53</url>
|
676 | 694 | <bibkey>yao-etal-2024-overview</bibkey>
|
677 | 695 | <doi>10.18653/v1/2024.clinicalnlp-1.53</doi>
|
| 696 | + <video href="2024.clinicalnlp-1.53.mp4"/> |
678 | 697 | </paper>
|
679 | 698 | <paper id="54">
|
680 | 699 | <title><fixed-case>I</fixed-case>ryo<fixed-case>NLP</fixed-case> at <fixed-case>MEDIQA</fixed-case>-<fixed-case>CORR</fixed-case> 2024: Tackling the Medical Error Detection & Correction Task on the Shoulders of Medical Agents</title>
|
|
734 | 753 | <url hash="97282f3e">2024.clinicalnlp-1.58</url>
|
735 | 754 | <bibkey>zhao-rios-2024-utsa</bibkey>
|
736 | 755 | <doi>10.18653/v1/2024.clinicalnlp-1.58</doi>
|
| 756 | + <video href="2024.clinicalnlp-1.58.mp4"/> |
737 | 757 | </paper>
|
738 | 758 | <paper id="59">
|
739 | 759 | <title><fixed-case>W</fixed-case>ang<fixed-case>L</fixed-case>ab at <fixed-case>MEDIQA</fixed-case>-<fixed-case>CORR</fixed-case> 2024: Optimized <fixed-case>LLM</fixed-case>-based Programs for Medical Error Detection and Correction</title>
|
|
760 | 780 | <url hash="3f088f41">2024.clinicalnlp-1.60</url>
|
761 | 781 | <bibkey>toma-etal-2024-wanglab-mediqa</bibkey>
|
762 | 782 | <doi>10.18653/v1/2024.clinicalnlp-1.60</doi>
|
| 783 | + <video href="2024.clinicalnlp-1.60.mp4"/> |
763 | 784 | </paper>
|
764 | 785 | <paper id="61">
|
765 | 786 | <title><fixed-case>LG</fixed-case> <fixed-case>AI</fixed-case> Research & <fixed-case>KAIST</fixed-case> at <fixed-case>EHRSQL</fixed-case> 2024: Self-Training Large Language Models with Pseudo-Labeled Unanswerable Questions for a Reliable Text-to-<fixed-case>SQL</fixed-case> System on <fixed-case>EHR</fixed-case>s</title>
|
|
785 | 806 | <url hash="13a0e052">2024.clinicalnlp-1.62</url>
|
786 | 807 | <bibkey>lee-etal-2024-overview</bibkey>
|
787 | 808 | <doi>10.18653/v1/2024.clinicalnlp-1.62</doi>
|
| 809 | + <video href="2024.clinicalnlp-1.62.mp4"/> |
788 | 810 | </paper>
|
789 | 811 | <paper id="63">
|
790 | 812 | <title>Saama Technologies at <fixed-case>EHRSQL</fixed-case> 2024: <fixed-case>SQL</fixed-case> Generation through Classification Answer Selector by <fixed-case>LLM</fixed-case></title>
|
|
796 | 818 | <url hash="a3704abc">2024.clinicalnlp-1.63</url>
|
797 | 819 | <bibkey>jabir-etal-2024-saama</bibkey>
|
798 | 820 | <doi>10.18653/v1/2024.clinicalnlp-1.63</doi>
|
| 821 | + <video href="2024.clinicalnlp-1.63.mp4"/> |
799 | 822 | </paper>
|
800 | 823 | <paper id="64">
|
801 | 824 | <title><fixed-case>KU</fixed-case>-<fixed-case>DMIS</fixed-case> at <fixed-case>EHRSQL</fixed-case> 2024 : Generating <fixed-case>SQL</fixed-case> query via question templatization in <fixed-case>EHR</fixed-case></title>
|
|
825 | 848 | <url hash="ca0aca12">2024.clinicalnlp-1.65</url>
|
826 | 849 | <bibkey>kim-etal-2024-probgate</bibkey>
|
827 | 850 | <doi>10.18653/v1/2024.clinicalnlp-1.65</doi>
|
| 851 | + <video href="2024.clinicalnlp-1.65.mp4"/> |
828 | 852 | </paper>
|
829 | 853 | <paper id="66">
|
830 | 854 | <title><fixed-case>LTRC</fixed-case>-<fixed-case>IIITH</fixed-case> at <fixed-case>EHRSQL</fixed-case> 2024: Enhancing Reliability of Text-to-<fixed-case>SQL</fixed-case> Systems through Abstention and Confidence Thresholding</title>
|
|
0 commit comments