-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
118 lines (86 loc) · 3.58 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from datetime import datetime, timedelta
import pandas as pd
import os
FMT = '%d/%m/%Y'
def load_data(fileName):
# Open file inependently of where your project is located
__location__ = os.path.realpath( os.path.join(os.getcwd(), os.path.dirname(__file__)))
fileName = os.path.join(__location__, fileName)
df = pd.read_csv(fileName)
return df
def clean_data(df, cumsum = False):
# Create a new dataframe with all dates
dates = df['DateRep'].map(lambda x: (datetime.strptime(x, FMT)))
date_min = min(dates)
date_max = max(dates)
data_cases = pd.DataFrame(index=pd.date_range(date_min, date_max))
data_deaths = pd.DataFrame(index=pd.date_range(date_min, date_max))
# fill the dataframe with data from each country
countries = set(df['Country'])
for country in countries:
df_country = df[df['Country'] == country]
df_country.index = df_country['DateRep'].map(lambda x: (datetime.strptime(x, FMT)))
data_cases = data_cases.join(df_country['Cases'], how='outer')
data_cases.rename(columns={'Cases': country}, inplace=True)
data_deaths = data_deaths.join(df_country['Deaths'], how='outer')
data_deaths.rename(columns={'Deaths': country}, inplace=True)
data_deaths = data_deaths.drop_duplicates().fillna(0)
data_cases = data_cases.drop_duplicates().fillna(0)
if cumsum:
data_deaths = data_deaths.cumsum()
data_cases = data_cases.cumsum()
return data_cases, data_deaths
def toDate(delta):
s="2020-01-01 00:00:00"
date = datetime.strptime(s, '%Y-%m-%d %H:%M:%S')
date += timedelta(days=delta)
return date
def getDataFrame(fileName):
return pd.read_csv(fileName)
def readDataForCountry(df, country):
df = df[df.Country.str.match('%s' % country, case=False)]
# if country == "EU":
# df = df[df.EU.str.match('EU', case=False)]
# print(df)
# exit()
# print(df)
df = df.loc[:, ['DateRep', 'Cases']]
df = df[::-1]
date = df['DateRep']
df['DateRep'] = date.map(lambda x: (datetime.strptime(x, FMT) - datetime.strptime("01/01/2020", FMT)).days)
new_cases = df['Cases']
df['Cases'] = new_cases.cumsum(axis=0)
# print(df)
if df.empty:
raise ValueError(">>>>> readDataForCountry: Problem with reading data for %s!" % country)
return df
def readDataForCountryFormatTwo(country, fileName="new_cases.csv"):
df = pd.read_csv(fileName)
FMT = '%Y-%m-%d'
try:
df = df.loc[:, ['date', '{}'.format(country)]]
except:
raise KeyError(">>>>> readDataForCountryFormatTwo: Country {} not available.".format(country))
date = df['date']
df['date'] = date.map(lambda x: (datetime.strptime(x, FMT) - datetime.strptime("2020-01-01", FMT)).days)
df = df.dropna()
new_cases = df['{}'.format(country)]
df['{}'.format(country)] = new_cases.cumsum(axis=0)
# print(df)
if df.empty:
raise ValueError(">>>>> readDataForCountryFormatTwo: Problem with reading data for %s!" % country)
return df
def getXYDataForCountry(countryName, fileName, fileFormat, ndiscard):
if fileFormat == 1:
df = readDataForCountry(countryName, fileName)
dateName = 'DateRep'
lastDate = toDate(int(df[dateName].iloc[-1]))
elif fileFormat == 2:
df = readDataForCountryFormatTwo(countryName, fileName)
dateName = 'date'
lastDate = toDate(int(df[dateName].iloc[-1]))
else:
raise ValueError(">>>>> getXYDataForCountry: Unknown file format!")
x = list(df.iloc[ndiscard:, 0])
y = list(df.iloc[ndiscard:, 1])
return x, y