-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFace_data.py
72 lines (43 loc) · 1.45 KB
/
Face_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
face_cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
skip = 0
face_data = []
dataset_path = './data/'
file_name = input("Enter the name of the person :")
while True:
ret,frame = cap.read()
if ret==False:
continue
gray_frame = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
#sorting based on area
faces = face_cascade.detectMultiScale(frame,1.3,5)
faces = sorted(faces,key=lambda f:f[2]*f[3])
#Pick the last face as it is the largest face acc to area
for face in faces[-1:]:
x,y,w,h = face
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,255),2)
#extract (crop out the required face)
offset = 10
face_section = frame[y-offset:y+h+offset,x-offset:x+w+offset]
face_section = cv2.resize(face_section,(100,100))
#store every 10th face
skip+=1
if skip%10==0:
face_data.append(face_section)
print(len(face_data))
cv2.imshow("Frame",frame)
#cv2.imshow("Face Section",face_section)
key_pressed = cv2.waitKey(1) &0xFF
if key_pressed == ord('q'):
break
#convert face list into numpy array
face_data = np.asarray(face_data)
face_data = face_data.reshape((face_data.shape[0],-1))
print(face_data.shape)
#save this data into file system
np.save(dataset_path+file_name+'.npy',face_data)
print("data sucessfully save")
cap.release()
cv2.destroyAllWindows()