-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
268 lines (222 loc) · 9.66 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""
data.py script is by traing.py to deal with data.
You do not have to run this script.
"""
from settings import *
import time
import random
import numpy as np
import cv2 as cv
import pandas as pd
import threading
import multiprocessing
classes = [fname for fname in os.listdir(train_folder)]
print(classes)
train_images_orig_grouped = []
train_images_grouped = []
val_images_grouped = []
test_images_grouped = []
train_max_cnt = 0
for cls in classes:
train_cls_folder = os.path.join(train_folder, cls)
val_cls_folder = os.path.join(val_folder, cls)
test_cls_folder = os.path.join(test_folder, cls)
train_cls_images = [os.path.join(train_cls_folder, fname) for fname in os.listdir(train_cls_folder)]
val_cls_images = [os.path.join(val_cls_folder, fname) for fname in os.listdir(val_cls_folder)]
test_cls_images = [os.path.join(test_cls_folder, fname) for fname in os.listdir(test_cls_folder)]
if join_test_with_train:
train_cls_images = train_cls_images + test_cls_images
test_cls_images = []
train_images_orig_grouped.append(train_cls_images)
train_images_grouped.append(train_cls_images)
val_images_grouped.append(val_cls_images)
test_images_grouped.append(test_cls_images)
if train_max_cnt < len(train_cls_images):
train_max_cnt = len(train_cls_images)
for i in range(len(classes)):
train_cls_images = train_images_grouped[i]
if len(train_cls_images) > 0:
while len(train_cls_images) < train_max_cnt:
train_cls_images = train_cls_images + train_cls_images
train_cls_images = train_cls_images[:train_max_cnt]
train_images_grouped[i] = train_cls_images
else:
print(classes[i], 'has no train images!')
train_images_orig = []
train_classes_orig = []
train_images = []
train_classes = []
val_images = []
val_classes = []
test_images = []
test_classes = []
for i in range(len(classes)):
train_images_orig = train_images_orig + train_images_orig_grouped[i]
train_classes_orig = train_classes_orig + [i for _ in range(len(train_images_orig_grouped[i]))]
train_images = train_images + train_images_grouped[i]
train_classes = train_classes + [i for _ in range(len(train_images_grouped[i]))]
val_images = val_images + val_images_grouped[i]
val_classes = val_classes + [i for _ in range(len(val_images_grouped[i]))]
test_images = test_images + test_images_grouped[i]
test_classes = test_classes + [i for _ in range(len(test_images_grouped[i]))]
print(len(train_images_orig), len(train_classes_orig), len(train_images), len(train_classes),
len(val_images), len(val_classes), len(test_images), len(test_classes))
train_orig_zip = list(zip(train_images_orig, train_classes_orig))
random.Random(0).shuffle(train_orig_zip)
train_images_orig, train_classes_orig = zip(*train_orig_zip)
#print(train_images_orig)
#print(train_classes_orig)
train_zip = list(zip(train_images, train_classes))
random.Random(0).shuffle(train_zip)
train_images, train_classes = zip(*train_zip)
#print(train_images)
#print(train_classes)
val_zip = list(zip(val_images, val_classes))
random.Random(0).shuffle(val_zip)
val_images, val_classes = zip(*val_zip)
#print(val_images)
#print(val_classes)
if not join_test_with_train:
test_zip = list(zip(test_images, test_classes))
random.Random(0).shuffle(test_zip)
test_images, test_classes = zip(*test_zip)
#print(test_images)
#print(test_classes)
"""
# LOAD DATA
x_train = np.zeros((len(train_images), image_size, image_size, 3), dtype=np.uint8)
y_train = np.array(train_classes, dtype=np.int32)
for i in range(len(train_images)):
img = cv.imread(train_images[i])
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
x_train[i] = img
x_val = np.zeros((len(val_images), image_size, image_size, 3), dtype=np.uint8)
y_val = np.array(val_classes, dtype=np.int32)
for i in range(len(val_images)):
img = cv.imread(val_images[i])
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
x_val[i] = img
if not join_test_with_train:
x_test = np.zeros((len(test_images), image_size, image_size, 3), dtype=np.uint8)
y_test = np.array(test_classes, dtype=np.int32)
for i in range(len(test_images)):
img = cv.imread(test_images[i])
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
x_test[i] = img
"""
# DATA AUGMENTATION
def get_data_generator():
data_gen = tf.keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
zca_epsilon=1e-06,
rotation_range=90,
width_shift_range=0.15,
height_shift_range=0.15,
brightness_range=(0.7, 1.3),
shear_range=0.1,
zoom_range=0.2,
channel_shift_range=0.0, # ???
fill_mode='constant', # 'nearest',
cval=0,
horizontal_flip=True,
vertical_flip=True,
rescale=None,
preprocessing_function=None,
validation_split=0.0,
dtype=np.float32)
return data_gen
# MULTITHREADED IMAGE LOADING
request_thread_stop = False
request_queue = []
request_queue_lock = threading.Lock()
result_queue = []
result_queue_lock = threading.Lock()
def thread_function(thread_index):
# print("Starting thread: ", thread_index)
data_gen = get_data_generator()
loop = True
while loop:
request = None
request_queue_lock.acquire()
if request_thread_stop:
loop = False
if len(request_queue) > 0:
request = request_queue.pop()
request_queue_lock.release()
if request is not None:
idx, data_aug, fpath = request
#print(thread_index, idx, fpath)
image = cv.imread(fpath)
if data_aug:
image = data_gen.random_transform(image)
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
result = (idx, image)
result_queue_lock.acquire()
result_queue.append(result)
result_queue_lock.release()
else:
time.sleep(0.01)
def stop_threads():
global request_thread_stop
request_queue_lock.acquire()
request_thread_stop = True
request_queue_lock.release()
threads = []
thread_count = multiprocessing.cpu_count()
for ti in range(thread_count):
thread = threading.Thread(target=thread_function, args=(ti,))
threads.append(thread)
thread.start()
# DATA GENERATOR
class DataGenerator(tf.keras.utils.Sequence):
def __init__(self, images, image_classes, use_augmentation=False):
self.images = images
self.image_classes = image_classes
self.use_augmentation = use_augmentation
def __len__(self):
return int(np.ceil(len(self.images) / batch_size))
def __getitem__(self, idx):
global request_queue_lock, request_queue, result_queue_lock, result_queue
batch_start = idx * batch_size
batch_end = min(len(self.images), (idx + 1) * batch_size)
batch_images = self.images[batch_start:batch_end]
batch_classes = self.image_classes[batch_start:batch_end]
batch_x = np.zeros((len(batch_images), image_size, image_size, 3), dtype=np.float32)
batch_y = np.array(batch_classes, dtype=np.int32)
request_queue_lock.acquire()
for idx in range(len(batch_images)):
request = (idx, self.use_augmentation, batch_images[idx])
request_queue.append(request)
request_queue_lock.release()
wait = True
while wait:
time.sleep(0.01)
result_queue_lock.acquire()
if len(result_queue) >= len(batch_images):
wait = False
for result in result_queue:
idx, image = result
batch_x[idx] = image
result_queue = []
result_queue_lock.release()
return batch_x, batch_y
def test_data_augmentation(x):
data_gen = get_data_generator()
for i in range(len(x)):
img = data_gen.random_transform(x[i])
img = np.clip(img, 0, 255).astype(np.uint8)
cv.imwrite(os.path.join(tmp_folder, str(i) + '.jpg'), img)
########################################################################################################################
# LOCAL EXECUTION (TEST DATA AUGMENTATION)
########################################################################################################################
if __name__ == "__main__":
img = cv.imread(train_images[0])
n = 100
imgs = np.zeros((n, img.shape[0], img.shape[1], 3))
for i in range(n):
imgs[i] = img
test_data_augmentation(imgs)
stop_threads()