-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconversion.py
62 lines (51 loc) · 2.04 KB
/
conversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Standard library imports
import os
import random
import csv
import numpy as np
import torch
import mne
from tqdm import tqdm
# Function to set the seed for reproducibility
def seed_everything(seed_value):
random.seed(seed_value)
np.random.seed(seed_value)
os.environ["PYTHONHASHSEED"] = str(seed_value)
seed = 0
seed_everything(seed)
# Directories
root_folder = ''
processed_folder = ''
extension = '.fif'
# Create processed folder if it doesn't exist
if not os.path.exists(processed_folder):
os.makedirs(processed_folder)
# Function to list EDF files
def list_files_with_extension(root_folder, extension):
matching_files = []
for dirpath, dirnames, filenames in os.walk(root_folder):
for filename in filenames:
if filename.endswith(extension):
matching_files.append(os.path.join(dirpath, filename))
return matching_files
# Save processed data and log info
def save_and_log_data(raw, filename, save_path, csv_logger):
data = raw.get_data()
torch_data = torch.from_numpy(data)
total_samples = data.shape[1] # Total number of samples post-resampling
torch.save(torch_data, os.path.join(save_path, filename + '.pt'))
csv_logger.writerow([filename + '.pt', total_samples])
# Processing EDF files
Raw_fif_Files = list_files_with_extension(root_folder, extension)
# Open CSV file for logging
with open(os.path.join(processed_folder, 'sequence_info.csv'), mode='w', newline='') as csv_file:
csv_writer = csv.writer(csv_file)
csv_writer.writerow(['filename', 'time_len'])
# Process each file with progress monitoring
for fif_file in tqdm(Raw_fif_Files, desc="Processing files",mininterval=60):
try:
preprocessed_data = mne.io.read_raw_fif(fif_file, preload=True, verbose=False)
filename_without_extension = os.path.splitext(os.path.basename(fif_file))[0]
save_and_log_data(preprocessed_data, filename_without_extension, processed_folder, csv_writer)
except Exception as e:
print(f"Error processing {fif_file}: {e}")