-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConformal-Field-Theory.tex
2720 lines (2595 loc) · 185 KB
/
Conformal-Field-Theory.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[10pt]{article}
\usepackage{zsj}
\usepackage{silence}
\WarningFilter{latex}{Marginpar on page}
\allowdisplaybreaks
\hbadness=99999
\newcommand{\me}{\mathrm{e}}
%\newcommand{\rr}{\mathbb{R}}
\newcommand{\ii}{\mathrm{i}}
%\newcommand{\md}{\mathrm{d}}
%\DeclareMathOperator{\im}{im}
\usepackage{annotate-equations}
\usepackage{marginfix}
\usepackage{simpler-wick}
\usepackage[export]{adjustbox}
\newenvironment{boxmath}[1]{\begin{tcolorbox}[enhanced,attach boxed title to top center={yshift=-\tcboxedtitleheight/2},boxrule=1pt,title={\centering #1},colframe=NavyBlue!70!black,colback=NavyBlue!10,colbacktitle=NavyBlue!10,fonttitle=\scshape,coltitle=Black]}{\end{tcolorbox}}
\crefname{claim}{claim}{claims}
\begin{document}
\title{Conformal Field Theory}
\subheader{Notes}
\author{Shangjie Zhou\orcidlink{0000-0001-9576-5011}}
\affiliation{Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA}
\emailAdd{ZhouShangjie@purdue.edu}
\abstract{\textit{Last updated on: \today}\\Latest version: \url{https://github.com/Zhou-Shangjie/Conformal-Field-Theory/releases/latest}\\Source files: \url{https://github.com/Zhou-Shangjie/Conformal-Field-Theory}\\Personal Website: \url{https://zhou-shangjie.com}}
\maketitle
\phantomsection\addcontentsline{toc}{section}{\protect\numberline{}Introduction}
\section*{Introduction}
A conformal field theory (CFT) is a quantum field theory that is invariant under \textit{conformal transformations}.
Conformal field theory has important applications to condensed matter physics, statistical mechanics, quantum statistical mechanics, and string theory.
This notes are mainly based on the yellow book\cite{DiFrancesco:1997nk}.
There are also useful lecture notes like \cite{Qualls:2015qjb,Tong:2009np}.
\clearpage
\part{Review}
\section{Quantum Field Theory}
This section only contains some topics of QFT and necessary notations we will use later.
For a complete introduction to QFT, see \cite{Peskin:1995ev,srednicki_2007,weinberg_1995,schwartz_2013,Zee:2003mt,Coleman:2018mew}.
\subsection{Path Integral Quantization}
\begin{intu}
The way to quantize a \textit{classical} system\mn{Geometric quantization is among them\cite{woodhouse1997geometric,carosso2018geometric}. See more about this topic in \cite{Ali:2004ft}.} is not unique and different formulations of quantization may give different results.
For example, in canonical quantization, the ordering of operators may lead to different quantization \textit{schemes}.
Different quantization formulations may have mathematical connections which may simplify problems.
In each quantization formalism, the method to compute the correlation function of fields must be given and the results of correlation functions are used to judge if the formalisms are equivalent.
\end{intu}
In the path integral formulation of QFT, we directly\sidenote{In canonical quantization, we do not directly compute the correlation function. Instead, we first construct Hilbert space and opertors in it.} focus on correlation functions of fields.
\subsubsection{Lorentzian Formalism}
In a Lorentzian spacetime, we define the Lorentzian quantization of field by requiring the correlation functions to satisfy the following relation:
\begin{boxmath}{Lorentzian Path Integral Quantization}
\begin{align}
\expval{\phi_1(x_1)\dots\phi_n(x_n)}=\frac{\int [\dd[]{\phi}]\phi_1(x_1)\dots\phi_n(x_n)\exp(\ii S[\phi])}{\int[\dd[]{\phi}]\exp(\ii S[\phi])}
\end{align}
\end{boxmath}
where the time integral of the action $S=\int\dd[4]{x}\mathcal{L}$ should be performed along $t(1-\ii\epsilon)$ where $\epsilon\to0$ (see \cite{Peskin:1995ev} for more details).
\subsubsection{Euclidean Formalism}
In a Euclidean spacetime, there is no notion of "time", so we simply pick out a coordinate and call it "Euclidean time" $\tau$.
We define the Euclidean quantization of field by requiring the correlation functions to satisfy the following relation:
\begin{boxmath}{Euclidean Path Integral Quantization}
\begin{align}
\expval{\phi_1(\tau_1,\vec{x}_1)\dots\phi_n(\tau_n,\vec{x}_n)}=\frac{\int [\dd[]{\phi}]\phi_1(\tau_1,\vec{x}_1)\dots\phi_n(\tau_n,\vec{x}_n)\exp(-S_E[\phi])}{\int [\dd[]{\phi}]\exp(-S_E[\phi])}
\end{align}
\end{boxmath}
\subsubsection{Lorentzian/Euclidean Duality}
\subsection{Symmetries and Conservation Laws}
\subsubsection{Continuous Symmetry Transformations}
Consider a collection of fields, which are denoted by $\Phi(x)$.
The action is
\begin{align}
S=\int\dd[d]{x}\mathcal{L}\left(\Phi,\partial_\mu\Phi\right).
\end{align}
Consider a transformation affecting both the position and the field
\begin{subequations}\label{eq:CST:transformations}
\begin{align}
x & \to x' \\
\Phi(x) & \to\Phi'(x')
\end{align}
\end{subequations}
In the transformations \cref{eq:CST:transformations}, the new field $\Phi'$ at $x'$ is expressed as a function of the old field $\Phi$ at $x$
\begin{align}
\Phi'(x')=\mathcal{F}\left[\Phi(x)\right].
\end{align}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\linewidth]{fig/Quantum Field Theory/transformation_illustration/fig.pdf}
\caption{A illustration of the transformation of the fields where the background spacetime is 2-dimensional. The colored areas are the non-vanishing part of the fields.}
\end{figure}
The new action is
\begin{align}
S' & =\int\dd[d]{x}\mathcal{L}\left(\Phi'(x),\partial_\mu\Phi'(x)\right)\notag \\
& =\int\dd[d]{x'}\mathcal{L}\left(\Phi'(x'),\partial'_\mu\Phi'(x')\right)\notag \\
& =\int\dd[d]{x'}\mathcal{L}\left(\mathcal{F}\left[\Phi(x)\right],\partial'_\mu\mathcal{F}\left[\Phi(x)\right]\right)\notag \\
& =\int\dd[d]{x}\abs{\pdv{x'}{x}}\mathcal{L}\left(\mathcal{F}[\Phi(x)],\left(\pdv*{x^\nu}{x'^\mu}\right)\partial_\nu\mathcal{F}[\Phi(x)]\right).\label{eq:CST:new_action}
\end{align}
\subsubsection{Infinitesimal Transformations and Noether's Theorem}
Infinitesimal transformations may in general written as\sidenote{We often denote $\mathcal{F}[\phi(x)]$ by $\mathcal{F}(x)$.}
\begin{align}
x'^\mu & =x^\mu+\omega_a\fdv{x^\mu}{\omega_a}\label{eq:CST:x_prime} \\
\Phi'(x') & =\Phi(x)+\omega_a \fdv{\mathcal{F}(x)}{\omega_a}\label{eq:CST:phi_prime}
\end{align}
Here $\{\omega_a\}$ is a set of infinitesimal parameters, which will be kept to first order only.
\begin{definition}[Generator of a symmetry transformation]\label{def:generator_of_a_symmetry_transformation}
The \textit{generator} $G_a$ of a symmetry transformation is defined by the following expression for the infinitesimal transformation at a same point:
\begin{align}
\delta_\omega\Phi(x)\equiv\Phi'(x)-\Phi(x)\equiv-\ii\omega_a G_a\Phi(x).
\end{align}
\end{definition}
Notice that
\begin{align}
\Phi'(x')=\Phi(x)+\omega_a \fdv{\mathcal{F}(x)}{\omega_a}=\Phi(x')-\omega_a\fdv{x^\mu}{\omega_a}\partial_\mu\Phi(x')+\omega_a\fdv{\mathcal{F}(x')}{\omega_a}
\end{align}
The explicit expression of the generator is therefore
\begin{align}
\ii G_a\Phi=\fdv{x^\mu}{\omega_a}\partial_\mu\Phi-\fdv{\mathcal{F}}{\omega_a}\label{eq:CST:explicit_generator}
\end{align}
\begin{example}[Infinitesimal translation]
For an infinitesimal translation by a vector $\omega_\mu$, one has $\fdv*{x^\mu}{\omega^\nu}=\delta^\mu_\nu$ and $\fdv*{\mathcal{F}}{\omega^\nu}=0$.
The generator of translations is simply
\begin{align}
P_\nu=-\ii\partial_\nu.\label{eq:CST:translation_operator}
\end{align}
\end{example}
\begin{example}[Infinitesimal Lorentz transformation]
An infinitesimal Lorentz transformation has the form
\begin{align}
x'^\mu=x^\mu+\tensor{\omega}{^\mu_\nu}x^\nu=x^\mu+\omega_{\rho\nu}\eta^{\rho\mu}x^\nu.
\end{align}
where $\omega_{\rho\nu}=-\omega_{\nu\rho}$.
Thus the variation of coordinates under transformation is
\begin{align}
\fdv{x^\mu}{\omega_{\rho\nu}}=\frac{1}{2}\left(\eta^{\rho\mu}x^\nu-\eta^{\nu\mu}x^\rho\right).\label{eq:CST:lorentz_x}
\end{align}
And its effect on the generic field $\Phi$ is
\begin{align}
\mathcal{F}[\Phi]=L_\Lambda \Phi\qq{and}L_\Lambda\approx1-\frac{1}{2}\ii\omega_{\rho\nu}S^{\rho\nu}\label{eq:CST:lorentz_phi}
\end{align}
where $S^{\rho\nu}$ is some Hermitian matrix obeying the Lorentz algebra.
Using \cref{eq:CST:explicit_generator}, we have
\begin{align}
\frac{1}{2}\ii\omega_{\rho\nu}L^{\rho\nu}\Phi=\frac{1}{2}\omega_{\rho\nu}\left(x^\nu\partial^\rho-x^\rho\partial^\nu\right)\Phi+\frac{1}{2}\ii\omega_{\rho\nu}S^{\rho\nu}\Phi
\end{align}
The generators of the Lorentz transformation are thus
\begin{align}
L^{\rho\nu}=\ii\left(x^\rho\partial^{\nu}-x^\nu\partial^\rho\right)+S^{\rho\nu}.\label{eq:CST:Lorentz_operator}
\end{align}
\end{example}
\begin{theorem}[Noether's theorem]
Every continuous symmetry of the action is associated with a current that is \textit{classically}\mn{Notice the \textit{classically}. In the quantum case, it may happen that the path integration measure does not possess the symmetry of the action, in which case that symmetry is said to be \textit{anomalous}.} conserved.
\end{theorem}
\begin{proof}
Using \cref{eq:CST:x_prime,eq:CST:phi_prime} in \cref{eq:CST:new_action}, we have
\begin{align}
\pdv{x'^\mu}{x^\mu}=\delta^\nu_\mu+\partial_\mu\left(\omega_a\fdv{x^\nu}{\omega_a}\right).\label{eq:qft:infinitesimal_inverse}
\end{align}
Using the first order approximation of the determinant of a matrix
\begin{align}
\det(1+E)\approx1+\Tr E\quad(E\ \text{is small})
\end{align}
we have
\begin{align}
\abs{\pdv{x'}{x}}\approx1+\partial_\mu\left(\omega_a\fdv{x^\mu}{\omega}\right)
\end{align}
and the reverse of \cref{eq:qft:infinitesimal_inverse} is
\begin{align}
\pdv{x^\nu}{x'^\mu}=\delta^\nu_\mu-\partial_\mu\left(\omega_a\fdv{x^\nu}{\omega_a}\right).
\end{align}
Now \cref{eq:CST:new_action} becomes
\begin{align}
S'= & \int\dd[d]{x}\left(1+\partial_\mu\left(\omega_a\fdv{x^\mu}{\omega_a}\right)\right)\notag \\
& \times\mathcal{L}\left(\Phi+\omega_a\fdv{\mathcal{F}}{\omega_a},\left[\delta^\nu_\mu-\partial_\mu\left(\omega_a\fdv{x^\nu}{\omega_a}\right)\right]\left[\partial_\nu\Phi+\partial_\nu\left(\omega_a\fdv{\mathcal{F}}{\omega_a}\right)\right]\right).
\end{align}
From the definition of symmetry, when $\omega_a$ are constants the variation $\delta S$ vanishes.
So $\delta S$ can only contain first derivatives of $\omega_a$, obtained by expanding the Lagrangian\mn{This is where the symmetry condition is used: when the transformation is not a symmetry transformation, if $\omega_a$ is constant then $\delta S$ may not vanish, and the expansion must involve terms without derivative; when the transformation is a symmetry transformation, if $\omega_a$ is constant then $\delta S=0$, so it is reasonable there are only terms with derivatives in $\delta S$ and all the terms without derivatives must sum up to $0$. After expanding $\delta S$, we find that that there is only term with first derivative.},
\begin{align}
\delta S\equiv S'-S=-\int\dd[d]{x}j^\mu_a\partial_\mu\omega_a\label{eq:nother:before_integration}
\end{align}
where
\begin{align}
j^\mu_a\equiv\left(\pdv{\mathcal{L}}{(\partial_\mu\Phi)}\partial_\nu\Phi-\delta^\mu_\nu\mathcal{L}\right)\fdv{x^\nu}{\omega_a}-\pdv{\mathcal{L}}{(\partial_\mu\Phi)}\fdv{\mathcal{F}}{\omega_a}.\label{eq:nother:canonical_current}
\end{align}
$j^\mu_a$ is called the \textit{current} associated with the infinitesimal transformation.
Integrate \cref{eq:nother:before_integration} by parts
\begin{align}
\delta S=\int\dd[d]{x}\partial_\mu j^\mu_a \omega_a.
\end{align}
When the field configuration obeys the classical equation of motion, $\delta S=0$ for any postion-dependent parameters $\omega_a(x)$, which implies the conservation law
\begin{align}
\partial_\mu j^\mu_a=0.
\end{align}
The conserved charge associated with $j^\mu_a$ is
\begin{align}
Q_a\equiv\int\dd[d-1]{x}j^0_a.
\end{align}
We can show that
\begin{align}
\dot{Q}_a= & \int\dd[d-1]{x}\partial_0 j^0_a\notag \\
= & -\int\dd[d-1]{x}\partial_i j^i_a\label{eq:nother:stocks_theorem} \\
= & -\int_\infty j^i_a\dd{\sigma^i}\notag \\
= & 0
\end{align}
where we used Stokes' theorem in \cref{eq:nother:stocks_theorem} and $\dd{\sigma^i}$ is the turface element at spatial infinity.
\end{proof}
\begin{remark}
We can freely add $j^\mu_a$ the divergence of an antisymmetric tensor without affecting the conservation
\begin{align}
j^\mu_a\to j^\mu_a+\partial_\nu B^{\nu\mu}_a\qq{where} B^{\nu\mu}_a=-B^{\mu\nu}_a\label{eq:nother:equiv_current}
\end{align}
since $\partial_\mu\partial_\nu B^{\nu\mu}_a=0$ by antisymmetry.
The current we defined in \cref{eq:nother:canonical_current} is said to be \textit{canonical}.
\end{remark}
\subsubsection{Transformations of the Correlation Functions}
Consider the general correlation function
\begin{align}
\expval{\Phi(x_1)\dots\Phi(x_n)}=\frac{1}{\eqnmarkbox[blue]{node1}{Z}}\int\left[\dd{\Phi}\right]\Phi(x_1)\dots\Phi(x_n)\exp(-\eqnmarkbox[purple]{node2}{S[\Phi]})
\end{align}
\annotate[yshift=-0.1em]{below}{node1}{Vacuum functional}
\annotate[yshift=0.5em]{}{node2}{Euclidean action}
When the transformation \cref{eq:CST:transformations} is a symmetry, we have the following constraint on the correlation function
\begin{subequations}\label{eq:TCF:correlation_transform}
\begin{align}
\expval{\Phi(x_1')\dots\Phi(x_n')}= & \frac{1}{Z}\int\left[\dd{\Phi}\right]\Phi(x_1')\dots\Phi(x_n')\exp(-S(\Phi))\notag \\
= & \frac{1}{Z}\int\left[\dd{\Phi'}\right]\Phi'(x_1')\dots\Phi'(x_n')\exp(-S(\Phi'))\label{eq:TCF:measure1} \\
= & \frac{1}{Z}\int\left[\dd{\Phi}\right]\mathcal{F}\left(\Phi(x_1')\right)\dots\mathcal{F}\left(\Phi(x_n')\right)\exp(-S(\Phi))\label{eq:TCF:measure2} \\
= & \expval{\mathcal{F}\left(\Phi(x_1)\right)\dots\mathcal{F}\left(\Phi(x_n)\right)}
\end{align}
\end{subequations}
We have assumed the Jacobian of this change of variable is trivial in \crefrange{eq:TCF:measure1}{eq:TCF:measure2}\sidenote{This is in fact the main obstacle to conformal invariance in a quantum symmetry: the action may well be scale invariant, but the measure is not because of the regularization procedure needed to define it properly.}.
\subsubsection{Ward Identities}
We can write the \textit{global} infinitesimal transformation as
\begin{align}
\Phi'(x)=\Phi(x)-\ii\eqnmarkbox[blue]{node1}{\omega_a} G_a\Phi(x).
\end{align}\annotate[yshift=0.5em]{}{node1}{Infinitesimal constant parameters}
Now we consider the \textit{local} infinitesimal transformation in which parameters will depend on spacetime coordinates
\begin{align}
\Phi'(x)=\Phi(x)-\ii\omega_a(x) G_a\Phi(x).
\end{align}
Denoting by $X$ and $X'$ the collection $\Phi(x_1)\dots\Phi(x_n)$ and $\Phi'(x_1)\dots\Phi'(x_n)$ of fields in the correlation function respectively and by $\delta_\omega X\equiv X'-X$ its variation under the transformation, we can do a change of variable
\begin{align}
\expval{X}= & \frac{1}{Z}\int\left[\dd{\Phi}\right]X\exp(-S[\Phi])\notag \\
= & \frac{1}{Z}\int\left[\dd{\Phi'}\right]X'\exp(-S[\Phi'])\notag \\
= & \frac{1}{Z}\int\left[\dd{\Phi}\right]\left(X+\delta_\omega X\right)\exp\left[-\left(S[\Phi]+\int\dd[d]{x}\partial_\mu j^\mu_a\omega_a(x)\right)\right]\label{eq:ward:before_est}
\end{align}
where we have used \cref{eq:nother:before_integration} and assuemd the functional integration measure is invariant under the transformation $\left[\dd{\Phi'}\right]=\left[\dd[]{\Phi}\right]$.
Expand \cref{eq:ward:before_est} to first order in $\omega_a(x)$, we have
\begin{align}
\expval{X} & =\frac{1}{Z}\int\left[\dd[]{\Phi}\right]\left(X+\delta_\omega X\right)\exp(-S)\left[1-\int\dd[]{x}\partial_\mu j^\mu_a\omega_a(x)\right]\notag \\
& =\expval{X}+\expval{\delta_\omega X}-\int\dd[d]{x}\partial_\mu\expval{j^\mu_a(x)X}\omega_a(x)
\end{align}
which finally gives\sidenote{It is clearly that $$\expval{\delta_\omega X}=\delta_\omega\expval{X}.$$}
\begin{align}
\expval{\delta_\omega X}=\int\dd[d]{x}\partial_\mu\expval{j^\mu_a(x)X}\omega_a(x).\label{eq:ward:anyomega}
\end{align}
The variation $\delta_\omega X$ is explicitly given to first order in $\omega_a(x)$ by
\begin{align}
\delta_\omega X & =-\ii\sum_{i=1}^n\left(\Phi(x_1)\dots G_a\Phi(x_i)\dots\Phi(x_n)\right)\omega_a(x_i)\notag \\
& =-\ii\int\dd[d]{x}\omega_a(x)\sum_{i=1}^n\left[\Phi(x_1)\dots G_a\Phi(x_i)\dots\Phi(x_n)\right]\delta(x-x_i).
\end{align}
Since \cref{eq:ward:anyomega} holds for any $\omega_a(x)$, we have the local relation which is called the \textit{Ward identity} for the current $j^\mu_a$.
\begin{boxmath}{Ward Identity}
\begin{align}
\pdv{x^\mu}\expval{j^\mu_a(x)\Phi(x_1)\dots\Phi(x_n)}=-\ii\sum^n_{i=1}\delta(x-x_i)\expval{\Phi(x_1)\dots G_a\Phi(x_i)\dots\Phi(x_n)}.\label{eq:QFT:ward_identity}
\end{align}
\end{boxmath}
\begin{remark}
The form of the current may be modified from the canonical definition \cref{eq:nother:canonical_current} without affecting the Ward identity, if we add a term to $j^\mu_a$ that is divergenceless identically.
\end{remark}
\subsection{The Energy-Momentum Tensor}
The conserved current associated with translation invariance is the \textit{energy-momentum tensor}, whose components are the density and flux density of energy and momentum.
Consider the infinitesimal translation\sidenote{The field is unaffected by the translation.} $x^\mu\to x^\mu+\epsilon^\mu$, we have
\begin{align}
\fdv{x^\mu}{\epsilon^\nu}=\delta^\mu_\nu\quad\fdv{\mathcal{F}[\Phi]}{\epsilon^\mu}=0.
\end{align}
Using \cref{eq:nother:canonical_current}, the corresponding canonical conserved current is
\begin{align}
T^{\mu\nu}_c\equiv-\eta^{\mu\nu}\mathcal{L}+\pdv{\mathcal{L}}{(\partial_\mu\Phi)}\partial^\nu\Phi
\end{align}
which satisfies
\begin{align}
\partial_\mu T^{\mu\nu}_c=0.
\end{align}
The conserved charge is the 4-momentum
\begin{align}
P^\nu\equiv\int\dd[d-1]{x}T^{0\nu}_c.
\end{align}
In particular, the energy is
\begin{align}
P^0=\int\dd[d-1]{x}\left(\pdv{\mathcal{L}}{\dot{\Phi}}\dot{\Phi}-\mathcal{L}\right)
\end{align}
which is the usual definition of the Hamiltonian.
\subsubsection{The Belinfante Tensor\label{subsubsec:The_Belinfante_Tensor}}
\begin{intu}
In general, the canonical energy-momentum operator is not symmetric, we can make it symmetric \textit{classically} by adding $T^{\mu\nu}_c$ an divergenceless term without breaking the conservation law or the Ward identity
\begin{align}
T^{\mu\nu}_B\equiv T^{\mu\nu}_c+\partial_{\rho}B^{\rho\mu\nu}\qq{where}B^{\rho\mu\nu}=-B^{\mu\rho\nu}.\label{eq:Belinfante:def}
\end{align}
\end{intu}
The variation of the action under a nonuniform translation with position-dependent parameter $\epsilon^\mu(x)$ is still
\begin{align}
\delta S=\int\dd[d]{x}\partial_\mu T^{\mu\nu}_B\epsilon_\nu
\end{align}
since $\partial_\mu T^{\mu\nu}_B=\partial_\mu T^{\mu\nu}_c$.
If we succeed in finding $B^{\rho\mu\nu}$ such that the new tensor $T^{\mu\nu}_B$ is symmetric, then the latter is called the \textit{Belinfante} energy-momentum tensor.
\paragraph{Finding Belinfante tensor}
From \cref{eq:CST:lorentz_x,eq:CST:lorentz_phi}, under infinitesimal Lorentz transformation, the coordinates and fields change as
\begin{align}
\fdv{x^\rho}{\omega_{\mu\nu}}=\frac{1}{2}\left(\eta^{\rho\mu}x^\nu-\eta^{\rho\nu}x^\mu\right)\qand\fdv{\mathcal{F}}{\omega_{\mu\nu}}=-\frac{\ii}{2}S^{\mu\nu}\rho
\end{align}
and the associated conserved current is
\begin{align}
j^{\mu\nu\rho}=T^{\mu\nu}_c x^\rho-T^{\mu\rho}_c x^\nu+\ii\pdv{\mathcal{L}}{(\partial_\mu\Phi)}S^{\nu\rho}\Phi.\label{eq:Belinfante:lorentz_current}
\end{align}
\begin{claim}
One of the possible form of $B^{\rho\mu\nu}$ that will make $T^{\mu\nu}_B$ symmetric is
\begin{align}
B^{\mu\rho\nu}=\frac{\ii}{2}\left[\pdv{\mathcal{L}}{(\partial_\mu\Phi)}S^{\nu\rho}\Phi+\pdv{\mathcal{L}}{(\partial_\rho\Phi)}S^{\mu\nu}\Phi+\pdv{\mathcal{L}}{(\partial_\nu\Phi)}S^{\mu\rho}\Phi\right].\label{eq:Belinfante:B}
\end{align}
\end{claim}
\begin{proof}
Using the fact $S^{\mu\nu}=-S^{\nu\mu}$, it can be easily checked that $B^{\mu\rho\nu}=-B^{\rho\mu\nu}$.
We can explicitly show that
\begin{align}
B^{\mu\rho\nu}-B^{\mu\nu\rho}=\ii\pdv{\mathcal{L}}{(\partial_\mu\Phi)}S^{\nu\rho}\Phi.
\end{align}
Acting $\partial_\mu$ on both sides of \cref{eq:Belinfante:lorentz_current}, we have
\begin{align}
T^{\rho\nu}_c-T^{\nu\rho}_c=-\ii\partial_\mu\left[\pdv{\mathcal{L}}{(\partial_\mu\Phi)}S^{\nu\rho}\Phi\right]
\end{align}
where the conservation laws $\partial_\mu j^{\mu\nu\rho}=0$ and $\partial_\mu T^{\mu\nu}=0$ are used.
We see that the antisymmetric part of $T^{\rho\nu}_c+\partial_\mu B^{\mu\rho\nu}$ vanishes which means $T^{\mu\nu}_B$ is indeed symmetric \textit{in a classical configuration}\mn{The symmetry is not guaranteed in any configuration, namely not \textit{identically}.}.
\end{proof}
\begin{remark}
The form of $B^{\mu\rho\nu}$ is not unique.
We use \cref{eq:Belinfante:B} to define $T_B^{\mu\nu}$ in this note.
Notice that the Belinfante tensor can only be defined in a theory with Lorentz invariance and is only symmetric classically.
And with $T^{\mu\nu}_B$ we can write the conserved current for Lorentz symmetry as\mn{Check it! It differs from the conserved current in \cref{eq:Belinfante:lorentz_current} by a divergenceless term which means they are equivalent.}
\begin{align}
j^{\mu\nu\rho}=T^{\mu\nu}_B x^\rho-T^{\mu\rho}_B x^\nu.\label{eq:Belinfante:after_stress_tensor}
\end{align}
\end{remark}
\begin{example}[Massive vector field\label{ex:massive_vector_field}]
Consider the following Lagrangian for a massive vector field $A_\mu$ (in Euclidean spacetime)
\begin{align}
\mathcal{L}=\frac{1}{4}F^{\alpha\beta}F_{\alpha\beta}+\frac{1}{2}m^2 A^\alpha A_\alpha
\end{align}
where $F_{\alpha\beta}\equiv\partial_\alpha A_\beta-\partial_\beta A_\alpha$.
The canonical energy-momentum tensor is
\begin{align}
T^{\mu\nu}_c=F^{\mu\alpha}\partial^\nu A_\alpha-\eta^{\mu\nu}\mathcal{L}
\end{align}
which is not symmetric.
Using \cref{eq:Belinfante:B,eq:Belinfante:def}, we have
\begin{align}
B^{\alpha\mu\nu}= & F^{\alpha\mu}A^\nu \\
T^{\mu\nu}_B= & T^{\mu\nu}_c+F^{\alpha\mu}\partial_\alpha A^\nu+\partial_\alpha F^{\alpha\mu}A^\nu
\end{align}
and we know $T^{\mu\nu}_B$ is classically symmetric.
\end{example}
\begin{intu}
Although we can replace the canonical energy-momentum tensor $T^{\mu\nu}_c$ by Belinfante tensor $T^{\mu\nu}_B$ without breaking the Ward identity, the $T^{\mu\nu}_B$ in Ward identity is not symmetric\mn{$T^{\mu\nu}_B$ is symmetric classically and in Ward identity we consider all possible field configuration.}.
In fact, it is possible to define a new energy-momentum tensor $\tilde{T}^{\mu\nu}_B$ which is a conserved current classically and symmetric in any field configuration, namely \textit{identically} symmetric.
And in general\mn[2em]{So not in every case.} we can directly substitute $\tilde{T}^{\mu\nu}_B$ into the Ward identity for $T^{\mu\nu}_c$ without breaking it.
\end{intu}
In \cref{ex:massive_vector_field}, we may define
\begin{align}
\tilde{T}^{\mu\nu}_B\equiv T^{\mu\nu}_B-\left(\partial_\alpha F^{\alpha\mu}-m^2 A^\mu\right)A^\nu.
\end{align}
We have $\tilde{T}^{\mu\nu}_B=T^{\mu\nu}_B$ classically using equation of motion and $\tilde{T}^{\mu\nu}_B$ can be directly used to replace $T^{\mu\nu}_c$ in the Ward identity for translation (see \cite{DiFrancesco:1997nk} for details\sidenote{\label{sidenote:modified_EM_tensor}The idea is that if we use the modified energy-momentum tensor $\tilde{T}^{\mu\nu}_B$, there will be an extra divergence term in the LHS of Ward identity \cref{eq:QFT:ward_identity}. Since the Dirac delta function has a precise meaning only after integration over some volume, we often integrate the Ward identity for furthur use and after the integration, the divergence term will vanish as a surface term.}).
\subsubsection{Hilbert Energy-Momentum Tensor}
Consider an infinitesimal translation of the coordinates $x^\mu\to x^\mu+\epsilon^\mu(x)$.
The variation of the action $\delta S$ can be calculated using \cref{eq:nother:before_integration}.
We want to define a new energy momentum tensor $\Theta^{\mu\nu}$ which satisfies
\begin{align}
\delta S\equiv-\frac{1}{2}\int\dd[d]{x}\Theta^{\mu\nu}\left(\partial_\mu\epsilon_\nu+\partial_\nu\epsilon_\mu\right)\label{eq:alternate_tensor:requirement}
\end{align}
%According to \cref{eq:nother:before_integration}, we have
%\begin{align}
% \delta S= & \int\dd[d]{x}T^{\mu\nu}\partial_\mu\epsilon_\nu\notag \\
% = & \frac{1}{2}\int\dd[d]{x}T^{\mu\nu}\left(\partial_\mu\epsilon_\nu+\partial_\nu\epsilon_\mu\right)\label{eq:alternate_tensor:delta_s}
%\end{align}
%where we have used identically symmetric energy-momentum tensor $T^{\mu\nu}$\sidenote{\Cref{eq:nother:before_integration} is actually valid for $T^{\mu\nu}_B$. The reason that it works when we use $T^{\mu\nu}$ instead of $T^{\mu\nu}_B$ is discussed in the Physics Stack Exchange questions \url{https://physics.stackexchange.com/q/119838} (version: 2014-06-18) and \url{https://physics.stackexchange.com/q/270877} (version: 2016-08-06)}.
%The induced metric of the map $x^\mu\to x'^\mu+\epsilon^\mu(x)$ to first order in $\epsilon$ is
%\begin{align}
% g'_{\mu\nu}= & \pdv{x^\alpha}{x'^\mu}\pdv{x^\beta}{x'^\nu}g_{\alpha\beta}\notag \\
% = & \left(\delta^\alpha_\mu-\partial_\mu\epsilon^\alpha\right)\left(\delta^\beta_\nu-\partial_\nu\epsilon^\beta\right)g_{\alpha\beta}.\notag\\
% =&g_{\mu\nu}-\left(\partial_\mu\epsilon_\nu+\partial_\nu\epsilon_\mu\right)
%\end{align}
%and so
%\begin{align}
% \delta g_{\mu\nu}\equiv g'_{\mu\nu}-g_{\mu\nu}=-\left(\partial_\mu\epsilon_\nu+\partial_\nu\epsilon_\mu\right).
%\end{align}
%\begin{intu}
% The form of the variation of the metric is a hint of a new definition of the energy-momentum tensor.
% We can rewrite \cref{eq:alternate_tensor:delta_s}
% \begin{align}
% \delta S=-\frac{1}{2}\int\dd[d]{x}T^{\mu\nu}\delta g_{\mu\nu}.
% \end{align}
%\end{intu}
\begin{definition}[Hilbert energy-momentum tensor\label{def:alternate_energy_momentum}]
The Hilbert energy-momentum tensor $\Theta^{\mu\nu}$ is defined to be proportional to the functional derivative of the action with respect to the metric, evaluated in flat space:
\begin{align}
\Theta^{\mu\nu}\equiv-2\eval{\fdv{S}{g_{\mu\nu}}}_{g_{\mu\nu}=\eta_{\mu\nu}}\label{eq:alternate_tensor:equation}
\end{align}
where the field is fixed and the background geometry is varied.
We have coupled the original theory to gravity which means we have to do the \textit{minimal coupling}\mn{Replace the partial derivatives by covariant derivatives and flat metric by a general metric in $S$.}.
\end{definition}
\begin{claim}
The new energy-momentum tensor $\Theta^{\mu\nu}$ in \cref{def:alternate_energy_momentum} satisfies \cref{eq:alternate_tensor:requirement}.
\end{claim}
\begin{proof}
The diffeomorphism $x^\mu\to x^\mu+\epsilon^\mu(x)$ will induce a new metric $g'_{\mu\nu}$ and the variation of metric can be shown to be
\begin{align}
\delta g_{\mu\nu}\equiv g'_{\mu\nu}-g_{\mu\nu}=-\left(\partial_\mu\epsilon_\nu+\partial_\nu\epsilon_\mu\right)\label{eq:alternate_tensor:var_metric}
\end{align}
If we take into account the effect of the variation $\delta g_{\mu\nu}$ as well as that of the variation of the field, the action should be invariant since the change made is a mere reparametrization
\begin{align}
\delta S=0=\eqnmarkbox[blue]{node1}{-\frac{1}{2}\int\dd[d]{x}\Theta^{\mu\nu}\left(\partial_\mu\epsilon_\nu+\partial_\nu\epsilon_\mu\right)}+\int\eqnmarkbox[red]{node2}{\left[-\left(\partial_\mu\epsilon_\nu+\partial_\nu\epsilon_\mu\right)\right]}\fdv{S}{g_{\mu\nu}}.\label{eq:alternate_tensor:requirement2}
\end{align}\annotate[yshift=-0.0cm]{below}{node1}{From variation of fields, using \cref{eq:alternate_tensor:requirement}}\annotate[yshift=0.3cm]{above,left}{node2}{Variation of metric, using \cref{eq:alternate_tensor:var_metric}}\\
Since $\epsilon_\mu(x)$ is arbitrary, \cref{eq:alternate_tensor:requirement2} can be satisfied if
\begin{align}
\Theta^{\mu\nu}=-2\eval{\fdv{S}{g_{\mu\nu}}}_{g_{\mu\nu}=\eta_{\mu\nu}}.
\end{align}
\end{proof}
\begin{remark}
The form of energy-momentum tensor that satisfies \cref{eq:alternate_tensor:requirement} is not unique since we can always add an antisymmetric and divergenceless term like what we did to the canonical energy-momentum tensor.
$\Theta^{\mu\nu}$ in \cref{def:alternate_energy_momentum} is obviously symmetric identically.
%The energy-momentum calculated using \cref{eq:alternate_tensor:equation} is the equivalent to the $\tilde{T}^{\mu\nu}_B$ up to a possible divergenceless term.
\end{remark}
The definition of energy-momentum tensors and their physical interpretations can be very subtle.
Some of the interesting topics about energy-momentum tensor are discussed in \cite{Blaschke:2016ohs,Forger:2003ut}.
\clearpage
\section{Statistical Mechanics}
\subsection{The Boltzmann Distribution}
\subsection{Critical Phenomena}
\subsection{The Renormalization Group: Lattice Models}
\subsection{The Renormalization Group: Continuum Models}
\subsection{The Transfer Matrix}
\clearpage
\part{Fundamentals}
\section{Global Conformal Invariance}
\subsection{The Conformal Group}
We denote by $g_{\mu\nu}$ the metric tensor in a spacetime of dimension $d$.
\begin{definition}[Conformal transformation]
A conformal transformation of the coordinates is an invertible mapping $x\to x'$, for which the induced metric tensor invariant up to a scale:
\begin{align}
g'_{\mu\nu}(x')=\Lambda(x)g_{\mu\nu}(x).\label{eq:ct:conformal_transformation}
\end{align}
\end{definition}
The induced metric can be calculated by
\begin{align}
g'_{\mu\nu}(x')=\pdv{x^\rho}{x'^\mu}\pdv{x^\sigma}{x'^\nu}g_{\rho\sigma}(x).\label{eq:ct:induced_metric}
\end{align}
The set of conformal transformations manifestly forms a group, and it obviously has the Poincar\'{e} group as a subgroup, since the latter corresponds to the special case $\Lambda(x)=1$.
\subsubsection{Infinitesimal Conformal Transformation}
Consider an infinitesimal conformal transformation $x^\mu\to x'^{\mu}+\epsilon^\mu(x)$.
The induced metric is
\begin{align}
g'_{\mu\nu}=g_{\mu\nu}-\left(\partial_\mu\epsilon_\nu+\partial_\nu\epsilon_\mu\right).
\end{align}
The requirement that the transformation be conformal implies that
\begin{align}
\partial_\mu\epsilon_\nu+\partial_\nu\epsilon_\mu=f(x)g_{\mu\nu}.\label{eq:GCI:fx}
\end{align}
Taking the trace of both sides of \cref{eq:GCI:fx}, we have
\begin{align}
f(x)=\frac{2}{d}\partial_\rho\epsilon^\rho.\label{eq:GCI:fx1}
\end{align}
For simplicity, we assume the original metric is standard Cartesian metric $g_{\mu\nu}=\eta_{\mu\nu}$, where $\eta_{\mu\nu}=\mathrm{diag}(1,1,\dots,1)$.\sidenote{Of cource we can consider Minkowski metric. The treatment is identical, except for the explicit form of $\eta_{\mu\nu}$.}
By applying an extra derivative $\partial_\rho$ on \cref{eq:GCI:fx}, permuting the indices and taking a linear combination, we arrive at
\begin{align}
2\partial_\mu\partial_\nu\epsilon_\rho=\eta_{\mu\rho}\partial_\nu f+\eta_{\nu\rho}\partial_\mu f-\eta_{\mu\nu}\partial_\rho f.\label{eq:GCI:fx2}
\end{align}
Upon contracting with $\eta^{\mu\nu}$, \cref{eq:GCI:fx2} becomes
\begin{align}
2\partial^2\epsilon_\mu=(2-d)\partial_\mu f \label{eq:GCI:fx3}
\end{align}
Applying $\partial_\nu$ on \cref{eq:GCI:fx3} and $\partial^2$ on \cref{eq:GCI:fx}, we have respectively
\begin{align}
\partial^2\partial_\nu\epsilon_\mu= & \frac{2-d}{2}\partial_\mu\partial_\nu f\label{eq:GCI:fx4} \\
\eta_{\mu\nu}\partial^2 f= & \partial^2\partial_\mu\epsilon_\nu+\partial^2\partial_\nu\epsilon_\mu.\label{eq:GCI:fx5}
\end{align}
Combine \cref{eq:GCI:fx4,eq:GCI:fx5}, we have\sidenote{Notice that the $\mu$ and $\nu$ indices in \cref{eq:GCI:fx4} are symmetric.}
\begin{align}
(2-d)\partial_\mu\partial_\nu f=\eta_{\mu\nu}\partial^2 f.\label{eq:GCI:fx6}
\end{align}
Finally, contracting \cref{eq:GCI:fx6} with $\eta^{\mu\nu}$, we end up with
\begin{align}
(d-1)\partial^2 f=0.\label{eq:GCI:fx7}
\end{align}
\paragraph{The case $d=1$}
The above equations do not impose any constraint on the function $f$, and therefore any smooth transformation is conformal in one dimension.
\paragraph{The case $d=2$}
This case is special and it will be studied in detail later.
\paragraph{The case $d\geq3$}
Now \cref{eq:GCI:fx6,eq:GCI:fx7} imply that $\partial_\mu\partial_\nu f=0$ and therefore
\begin{align}
f(x)=A+B_\mu x^\mu\label{eq:GCI:fxs}
\end{align}
where $A$ and $B_\mu$ are constants.
If we substitute \cref{eq:GCI:fxs} into \cref{eq:GCI:fx2}, we see that $\partial_\mu\partial_\nu\epsilon_\rho$ is constant, which means we have the general expression
\begin{align}
\epsilon_\mu=a_\mu+b_{\mu\nu}x^\nu+c_{\mu\nu\rho}x^\nu x^\rho\qq{where}c_{\mu\nu\rho}=c_{\mu\rho\nu}.
\end{align}
$a_\mu$, $b_{\mu\nu}$ and $c_{\mu\nu\rho}$ are constants.
We can treat each power of the coordinate separately and use the constraints \cref{eq:GCI:fx,eq:GCI:fx1,eq:GCI:fx2}:
\begin{itemize}
\item The constant term $a_\mu$ is free of constraints.
This term amounts to an infinitesimal translation.
\item Substitution of the linear term into \cref{eq:GCI:fx,eq:GCI:fx1} yields
\begin{align}
b_{\mu\nu}+b_{\nu\mu}=\frac{2}{d}\tensor{b}{^\lambda_\lambda}\eta_{\mu\nu}
\end{align}
which implies that\sidenote{We can always decompose a matrix into a sum of a symmetric part and an anti-symmetric part by $a_{mn}=\frac{a_{mn}+a_{nm}}{2}+\frac{a_{mn}-a_{nm}}{2}$.}
\begin{align}
b_{\mu\nu}=\alpha\eta_{\mu\nu}+m_{\mu\nu}\qq{where}m_{\mu\nu}=-m_{\nu\mu}.
\end{align}
$\alpha$ is a constant.
The symmetric part represents an infinitesimal scale transformation, whereas the anti-symmetric part is an infinitesimal rigid rotation.
\item Substitution of the linear term into \cref{eq:GCI:fx2,eq:GCI:fx1} yields
\begin{align}
c_{\mu\nu\rho}=\eta_{\mu\rho}b_{\nu}+\eta_{\mu\nu}b_{\rho}-\eta_{\nu\rho}b_{\mu}\qq{where}b_{\mu}\equiv\frac{\tensor{c}{^\sigma_\sigma_\mu}}{d}
\end{align}
and the corresponding infinitesimal transformation is
\begin{align}
x'^\mu=x^\mu+2(x\vdot b)x^\mu-b^\mu x^2
\end{align}
which is called \textit{special conformal transformation} (SCT).
\end{itemize}
The finite transformations corresponding to the above are the following:
\begin{boxmath}{Finite Conformal Transformation}
\begin{subequations}
\begin{align}
\text{(translation)} & \quad x'^\mu=x^\mu+a^\mu \\
\text{(dilation)} & \quad x'^\mu=\alpha x^\mu \\
\text{(rigid rotation)} & \quad x'^\mu=\tensor{M}{^\mu_\nu}x^\nu \\
\text{(SCT)} & \quad x'^\mu=\frac{x^\mu-b^\mu x^2}{1-2b\vdot x+b^2 x^2}
\end{align}
\end{subequations}
\end{boxmath}
Recall the \cref{def:generator_of_a_symmetry_transformation} and suppose the field are unaffected by the transformation, we can get the generators of the conformal group
\begin{boxmath}{Generators of Conformal Transformation}
\begin{subequations}
\begin{align}
\text{(translation)} & \quad P_\mu=-\ii\partial_\mu \\
\text{(dilation)} & \quad D=-\ii x^\mu\partial_\mu \\
\text{(rigid rotation)} & \quad L_{\mu\nu}=\ii(x_\mu\partial_\nu-x_\nu\partial_\mu) \\
\text{(SCT)} & \quad K_\mu=-\ii(2x_\mu x^\nu\partial_\nu-x^2\partial_\mu).
\end{align}
\end{subequations}
\end{boxmath}
The commutators of these generators define the \textit{conformal algebra}
\begin{boxmath}{Conformal Algebra}
\begin{subequations}
\begin{align}
\comm{D}{P_{\mu}} & =\ii P_\mu\label{eq:conformal_algebra_1} \\
\comm{D}{K_\mu} & =-\ii K_\mu\label{eq:conformal_algebra_2} \\
\comm{K_\mu}{P_\nu} & =2\ii\left(\eta_{\mu\nu}D-L_{\mu\nu}\right)\label{eq:conformal_algebra_3} \\
\comm{K_\rho}{L_{\mu\nu}} & =\ii(\eta_{\rho\mu}K_\nu-\eta_{\rho\nu}K_\mu)\label{eq:conformal_algebra_4} \\
\comm{P_\rho}{L_{\mu\nu}} & =\ii(\eta_{\rho\mu}P_{\nu}-\eta_{\rho\nu}P_{\mu})\label{eq:conformal_algebra_5} \\
\comm{L_{\mu\nu}}{L_{\rho\sigma}} & =\ii\left(\eta_{\nu\rho}L_{\mu\sigma}+\eta_{\mu\sigma}L_{\nu\rho}-\eta_{\mu\rho}L_{\nu\sigma}-\eta_{\nu\sigma}L_{\mu\rho}\right).\label{eq:conformal_algebra_6}
\end{align}
\end{subequations}
\end{boxmath}
Other commutators vanish.
\begin{remark}
The number of the generators of the conformal group is
\begin{align}
& 1\ \mathrm{dilation}+d\ \mathrm{translations}+d\ \mathrm{SCTs}+\frac{d(d-1)}{2}\ \mathrm{rotations}\notag \\
& =\frac{(d+2)(d+1)}{2}\ \mathrm{generators},
\end{align}
which is exactly the number of generators of the group $\mathrm{SO}(d+1,1)$.
In order to put the above commutation rules into a simpler form, we define the following generators\mn{Notice that the $\mu$ and $\nu$ indices runs from 1 to $d$.}:
\begin{align}
J_{\mu,\nu} & \equiv L_{\mu\nu} \\
J_{-1,\mu} & \equiv \frac{1}{2}(P_\mu-K_\mu) \\
J_{0,\mu} & \equiv \frac{1}{2}(P_\mu+K_\mu) \\
J_{-1,0} & \equiv D \\
J_{a,b} & \equiv-J_{b,a},
\end{align}
where $a,b\in\{-1,0,1,\dots,d\}$.
The last definition implies the diagonal elements vanish.
These new generators obey the $\mathrm{SO}(d+1,1)$ algebra
\begin{align}
\comm{J_{a,b}}{J_{c,d}}=\ii\left(\eta_{ad}J_{b,c}+\eta_{bc}J_{a,d}-\eta_{ac}J_{b,d}-\eta_{bc}J_{a,c}\right)
\end{align}
where the diagonal metric $\eta_{ab}$ is $\mathrm{diag}(-1,1,1,\dots,1)$ if spacetime is Euclidean (otherwise an additional component, say $g_{dd}$ is negative).
This shows the isomorphism between the $d$-dimensional conformal group and $\mathrm{SO}(d+1,1)$.
\end{remark}
\paragraph{Conformal invariants}
Consider functions $\Gamma(x_i)$ of $n$ points $x_i$ that are left unchanged under all types of conformal transformations.
\begin{itemize}
\item Translational and rotational invariance imply that $\Gamma$ can only depend on distances $\abs{x_i-x_j}$ between pairs of distinct points.
\item Scale invariance imply that only ratios of such distances, such as
\begin{align}
\frac{\abs{x_i-x_j}}{\abs{x_k-x_l}}
\end{align}
will appear in $\Gamma$.
\item Under SCT, $\abs{x_i-x_j}$ becomes
\begin{align}
\abs{x_i'-x_j'}=\frac{\abs{x_i-x_j}}{(1-2b\vdot x_i+b^2 x_i^2)^{\frac{1}{2}}(1-2b\vdot x_j+b^2 x_j^2)^{\frac{1}{2}}}.\label{eq:conformal_distance_trans}
\end{align}
\end{itemize}
We can see it is impossible to construct an invariant $\Gamma$ with only 2 or 3 points.
The simplest possibilities appear in $\Gamma$ are the functions of 4 points
\begin{align}
\frac{\abs{x_1-x_2}\abs{x_3-x_4}}{\abs{x_1-x_3}\abs{x_2-x_4}}\quad\frac{\abs{x_1-x_2}\abs{x_3-x_4}}{\abs{x_2-x_3}\abs{x_1-x_4}}\label{eq:anharmonic_ratio}
\end{align}
and such expressions are called \textit{anharmonic ratios} or \textit{cross-ratios}.
\begin{claim}
With $N$ distinct points in $D$-dimensional spacetime, the number of independent anharmonic ratios may be constructed must not be larger than $\frac{N(N-3)}{2}$ or $ND-\frac{(D+1)(D+2)}{2}$.
\end{claim}
\begin{proof}
We denote $r_{ij}\equiv\abs{x_i-x_j}$ where $i<j$.
Then the number of $r_{ij}$ is $\frac{N(N-1)}{2}$.
A general monomial $\prod_{1\leq i\leq j\leq N}r^{\mu_{ij}}_{ij}$ is conformally invariant if and only if $d_i\equiv\sum^{i-1}_{j=1}\mu_{ji}+\sum^N_{j=i+1}\mu_{ij}=0$ for all $i=1,\dots,N$ which gives $N$ constraints that $\mu_{ij}$ must obey.
It is crucial to realize that the dimension of the solution space of $\mu_{ij}$ is the maximal number of the independent cross ratios\mn{Convince yourself it is true!}.
So the number of the independent cross ratios cannot be larger than $\frac{N(N-1)}{2}-N=\frac{N(N-3)}{2}$.
If the spacetime dimension is $D$ then the dimension of the conformal group is $\frac{(D+1)(D+2)}{2}$ and the number of coordinates is $ND$.
So there are $\frac{(D+1)(D+2)}{2}$ constraints and the number of "algebraically independent" variables can actually be just $ND-\frac{(D+1)(D+2)}{2}$, which is also the maximal number of independent cross ratios.
See \cite{Ginsparg:1988ui} and the Physics Stack Exchange post \url{https://physics.stackexchange.com/q/68046} (version: 2013-06-14) for more details.
\end{proof}
\subsection{Conformal Invariance in Classical Field Theory}
\subsubsection{Representations of the Conformal Group in \texorpdfstring{$d$}{d} Dimensions}
\begin{intu}
Given an infinitesimal conformal transformation parametrized by $\omega_g$, we seek a matrix representation $T_g$ that a multicomponent field $\Phi(x)$ transforms as
\begin{align}
\Phi'(x')=(1-\ii\omega_g T_g)\Phi(x).
\end{align}
In the previous parts, we only considered the generators of the conformal transformations that only include spacetime transformation and leave the field unaffected.
Now we are considering conformal transformations that include field transformations, which is called the \textit{full conformal transformation}.
The corresponding generators are called the \textit{full generators} of the symmetry.
\end{intu}
We first look at an example of Poincar\'e transformation
\begin{example}
We define the effect of Lorentz transformation generator $L_{\mu\nu}$ on the field at $x=0$ by
\begin{align}
L_{\mu\nu}\Phi(0)\equiv \eqnmarkbox[blue]{node1}{S_{\mu\nu}} \Phi(0).\label{eq:poincare_algebra_trick:spin}
\end{align}
\annotate[yshift=0.5em]{}{node1}{Matrix}
$S_{\mu\nu}$ is an ordinary matrix since Lorentz transformation maps the origin to itself.
We can use a trick to get the effect of $L_{\mu\nu}$ on fields elsewhere
\begin{subequations}
\begin{align}
L_{\mu\nu}\Phi(x) & =L_{\mu\nu}\me^{\ii x^\mu P_\mu}\Phi(0)\notag \\
& =\me^{\ii x^\mu P_\mu}\me^{-\ii x^\mu P_\mu}L_{\mu\nu}\me^{\ii x^\mu P_\mu}\Phi(0)\label{eq:poincare_algebra_trick_haussdorff} \\
& =\me^{\ii x^\mu P_\mu}\left(L_{\mu\nu}-x_\mu P_{\nu}+x_\nu P_\mu\right)\Phi(0)\notag \\
& =\me^{\ii x^\mu P_\mu}\left(S_{\mu\nu}-x_\mu P_{\nu}+x_\nu P_\mu\right)\Phi(0)\notag \\
& =\left(S_{\mu\nu}-x_\mu P_{\nu}+x_\nu P_\mu\right)\Phi(x).
\end{align}
\end{subequations}
We used the \textit{Hausdorff formula} in \cref{eq:poincare_algebra_trick_haussdorff}
\begin{align}\label{eq:haussdorff}
\me^{-A}B\me^{A}=B+\comm{B}{A}+\frac{1}{2!}\comm{\comm{B}{A}}{A}+\frac{1}{3!}\comm{\comm{\comm{B}{A}}{A}}{A}+\dots.
\end{align}
We can do this for $P_\mu$ in the same way.
And finally
\begin{align}
P_\mu\Phi(x) & =-\ii\partial_\mu\Phi(x) \\
L_{\mu\nu}\Phi(x) & =\ii(x_\mu \partial_\nu-x_\nu\partial_\mu)\Phi(x)+S_{\mu\nu}\Phi(x).
\end{align}
\end{example}
\begin{remark}
If we already know how a generator act on field at one point, we can use the translation operators to derive the its effect on fields at other points.
In particular, if we know the effect of an operator $\mathcal{O}$ on the field at origin $\Phi(0)$, then its effect on $\Phi(x)$ can be calculated from $\me^{\ii x^\mu P_\mu}\mathcal{O}\me^{-\ii x^\mu P_\mu}$.
\end{remark}
We can in the same way for the full conformal group.
We denote the effect of $L_{\mu\nu}$, $D$ and $K_\mu$ at $x=0$ by $S_{\mu\nu}$, $\tilde{\Delta}$ and $\kappa_\mu$\sidenote{$S_{\mu\nu}$, $\tilde{\Delta}$ and $\kappa_\mu$ are all matrices since rotations, dilations and SCTs all map the origin to itself.}.
They form a matrix representation of the reduced conformal algebra as in \cref{eq:conformal_algebra_2,eq:conformal_algebra_4,eq:conformal_algebra_6}
\begin{subequations}
\begin{align}
\comm{\tilde{\Delta}}{S_{\mu\nu}}= & 0\label{eq:conformal_matrix_1} \\
\comm{\tilde{\Delta}}{\kappa_\mu}= & -\ii\kappa_\mu \\
\comm{\kappa_\nu}{\kappa_\mu}= & 0 \\
\comm{\kappa_\rho}{S_{\mu\nu}}= & \ii\left(\eta_{\rho\mu}\kappa_{\nu}-\eta_{\rho\nu}\kappa_\mu\right) \\
\comm{S_{\mu\nu}}{S_{\rho\sigma}}= & \ii\left(\eta_{\nu\rho}S_{\mu\sigma}+\eta_{\mu\sigma}S_{\nu\rho}-\eta_{\mu\rho}S_{\nu\sigma}-\eta_{\nu\sigma}S_{\mu\rho}\right).
\end{align}
\end{subequations}
Using \cref{eq:conformal_algebra_1,eq:conformal_algebra_2,eq:conformal_algebra_3,eq:conformal_algebra_4,eq:conformal_algebra_5,eq:conformal_algebra_6,eq:haussdorff}, we have
\begin{align}
\me^{\ii x^\rho P_\rho}D\me^{-\ii x^\rho P_\rho}= & D+x^\nu P_\nu \\
\me^{\ii x^\rho P_\rho}K_\mu\me^{-\ii x^\rho P_\rho}= & K_\mu+2x_\mu D-2x^\nu L_{\mu\nu}+2x_\mu\left(x^\nu P_\nu\right)-x^2 P_\mu
\end{align}
and therefore
\begin{align}
D\Phi(x)= & \left(-\ii x^\nu\partial_\nu+\tilde{\Delta}\right)\Phi(x)\label{eq:representation:dilation_operator} \\
K_\mu\Phi(x)= & \left(\kappa_\mu+2x_\mu\tilde{\Delta}-x^\nu S_{\mu\nu}-2\ii x_\mu x^\nu\partial_\nu+\ii x^2 \partial_\mu\right)\Phi(x).
\end{align}
\begin{remark}
If we demand the field $\Phi(x)$ belong to an irreducible representation of the Lorentz group, then by Schur's lemma and \cref{eq:conformal_matrix_1}, the matrix $\tilde{\Delta}$ is a multiple of the identity and all $\kappa_\mu$ vanishes.
We denote $\tilde{\Delta}\equiv-i\Delta$, where $\Delta$ is called the scaling dimension of the field $\Phi$.
\end{remark}
\paragraph{Spinless fields under conformal transformations}
For a spinless field, $S_{\mu\nu}=0$ and it transforms under a conformal transformation $x\to x'$ as (see the Physics StackExchange post \url{https://physics.stackexchange.com/q/536721} (version: 2020-03-17) for explanation\sidenote{The idea is to verify that every single type of the conformal transformation satisfies \cref{eq:representation:spinless_trans}.}.)
\begin{align}
\phi(x)\to\phi'(x')=\abs{\pdv{x'}{x}}^{-\frac{\Delta}{d}}\phi(x)\label{eq:representation:spinless_trans}
\end{align}
where $\abs{\pdv{x'}{x}}$ is the Jacobian of the conformal transformation which can shown to be related to the conformal factor in \cref{eq:ct:conformal_transformation} by
\begin{align}
\abs{\pdv{x'}{x}}=\Lambda(x)^{-\frac{d}{2}}.\label{eq:quasi_field_def}
\end{align}
\begin{definition}[Quasi-primary field]\label{def:quasi_primary_field}
In a $d$ dimensional spacetime, a \textit{spinless} field\mn{Note that this definition is limited to spinless field.} transforming under conformal transformation like
\begin{align}
\phi(x)\to\phi'(x')=\abs{\pdv{x'}{x}}^{-\frac{\Delta}{d}}\phi(x)
\end{align}
is called a \textit{quasi-primary field}, where $\Delta$ is the scaling dimension.
\end{definition}
\subsubsection{The Energy-Momentum Tensor\label{subsubsec:conformal_em_tensor}}
%If the field is in classical configuration, under an arbitrary transformation of the coordinates $x^\mu\to x^\mu+\epsilon^\mu(x)$, from \cref{def:alternate_energy_momentum}, the action changes as follows
%\begin{align}
% \delta S & =-\int\dd[d]{x} T^{\mu\nu}\partial_\mu\epsilon_\nu \\
% & =\frac{1}{2}\int\dd[d]{x}T_B^{\mu\nu}\left(\partial_\mu\epsilon_\nu+\partial_\nu\epsilon_\mu\right) \\
% & =-\frac{1}{2}\int\dd[d]{x}T_B^{\mu\nu}\delta g_{\mu\nu} \notag
%\end{align}
%where the energy-momentum tensor $T^{\mu\nu}$ is assumed to be symmetric.
%Under an infinitesimal conformal transformation, using \cref{eq:GCI:fx,eq:GCI:fx1}, we have
%\begin{align}
% \delta S & =\frac{1}{2}\int\dd[d]{x}T^{\mu\nu}f(x)g_{\mu\nu}\notag \\
% & =\frac{1}{d}\int\dd[d]{x}\tensor{T}{^\mu_\mu}\partial_\rho\epsilon^\rho.
%\end{align}
\begin{intu}
Under certain conditions, the energy-momentum tensor of a theory with scale invariance can be made traceless classically.
%If this is possible, then it follows from the above that full conformal invariance is a consequence of scale invariance and Poincar\'e invariance.
\end{intu}
\paragraph{Making energy-momentum tensor traceless with scale invariance}
We first consider a generic field with scale invariance in dimension $d>2$.
Using \cref{eq:nother:canonical_current}, the conserved current with associated with the infinitesimal dilation
\begin{align}
x'^\mu=(1+\alpha)x^\mu\qand\mathcal{F}(\Phi)=(1-\alpha\Delta)\Phi
\end{align}
is
\begin{align}
j^\mu_D= & -\mathcal{L}x^\mu+\pdv{\mathcal{L}}{(\partial_\mu\Phi)}x^\nu\partial_\nu\Phi+\pdv{\mathcal{L}}{(\partial_\mu\Phi)}\Delta\Phi\notag \\
= & \eqnmarkbox[blue]{node1}{T^\mu_{c\ \nu}}x^\nu+\pdv{\mathcal{L}}{(\partial_\mu \Phi)}\Delta\Phi.\label{eq:conformal_tensor:dilation_current_1}
\end{align}\annotate[yshift=-0.2cm]{below}{node1}{Canonical energy-momentum tensor}\\
%And the conservation equation gives\sidenote{Remember we are in the Euclidean spacetime.}
%\begin{align}
% \partial_\mu j^\mu_D= & T^\mu_{c\ \mu}+\Delta\partial_\mu\left(\pdv{\mathcal{L}}{(\partial_\mu\Phi)}\Phi\right)\notag \\
% = & 0.
%\end{align}
Now we define the \textit{virial}\sidenote{Maybe there is a typo in \cite{DiFrancesco:1997nk} on the definition of $V^\mu$.} of the field $\Phi$
\begin{align}
V^\mu\equiv\fdv{\mathcal{L}}{(\partial^\rho\Phi)}\left(\eta^{\mu\rho}\Delta+\frac{1}{2}\ii \eqnmarkbox[blue]{node1}{S^{\mu\rho}}\right)\Phi\label{eq:conformal_tensor:virial_def}
\end{align}\annotate[yshift=-0.2cm]{below}{node1}{Action of $L_{\mu\nu}$ on $\Phi(0)$, see \cref{eq:poincare_algebra_trick:spin}}\\
We assume\sidenote{It is an assumption! And it is obeyed in a large class of physical theories.} the virial is the divergence of another tensor $\sigma^{\alpha\mu}$
\begin{align}
V^\mu\equiv\partial_\alpha\sigma^{\alpha\mu}\label{eq:conformal_tenensor:condition}
\end{align}
And we also define\sidenote{It seems there is a typo in \cite{DiFrancesco:1997nk} on the definition of $X^{\lambda\rho\mu\nu}$.}
\begin{subequations}
\begin{align}
\sigma^{\mu\nu}_+\equiv & \frac{1}{2}\left(\sigma^{\mu\nu}+\sigma^{\nu\mu}\right) \\
X^{\lambda\rho\mu\nu}\equiv & \frac{2}{d-2}\left[\eta^{\lambda\rho}\sigma_+^{\mu\nu}-\eta^{\lambda\mu}\sigma_+^{\rho\nu}-\eta^{\lambda\mu}\sigma_+^{\nu\rho}+\eta^{\mu\nu}\sigma^{\lambda\rho}_+\right.\notag \\
& \quad\quad\quad\left.-\frac{1}{d-1}\left(\eta^{\lambda\rho}\eta^{\mu\nu}-\eta^{\lambda\mu}\eta^{\rho\nu}\right)\sigma^{\alpha}_{+\alpha}\right]
\end{align}
\end{subequations}
\begin{claim}
The modified energy-momentum tensor of a $d>2$ scale invariant theory
\begin{align}
T^{\mu\nu}\equiv T^{\mu\nu}_c+\partial_\rho B^{\rho\mu\nu}+\frac{1}{2}\partial_\lambda\partial_\rho X^{\lambda\rho\mu\nu}\label{eq:conformal_tensor:modified_tensor}
\end{align}
is both symmetric and traceless.
\end{claim}
\begin{proof}
The first two terms in \cref{eq:conformal_tensor:modified_tensor} is exactly $T^{\mu\nu}_B$ which is a symmetric conserved current.
\paragraph{Conservation}
It is easy to check that
\begin{align}
\partial_\mu\partial_\lambda\partial_\rho X^{\lambda\rho\mu\nu}=0.
\end{align}
So the modified energy-momentum tensor is a conserved current.
\paragraph{Symmetry}
Since we have
\begin{align}
X^{\lambda\rho\mu\nu}-X^{\lambda\rho\nu\mu}=\frac{2}{(d-2)(d-1)}\sigma^\alpha_{+\alpha}\left(\eta^{\lambda\mu}\eta^{\rho\nu}-\eta^{\lambda\nu}\eta^{\rho\mu}\right)
\end{align}
so it is clear that $\partial_\lambda\partial_\rho\left(X^{\lambda\rho\mu\nu}-X^{\lambda\rho\nu\mu}\right)=0$ which means $T^{\mu\nu}$ is symmetric.
\paragraph{Tracelessness}
The trace of the third term of \cref{eq:conformal_tensor:modified_tensor} is
\begin{align}
\frac{1}{2} \partial_\lambda \partial_\rho \tensor{X}{^\lambda^\rho^\mu_\mu}= & \partial_\lambda \partial_\rho \sigma^{\lambda\rho}_+ =\partial_\mu V^\mu.\label{eq:conformal_tensor:partial_X}
\end{align}
Using \cref{eq:Belinfante:B}, we have
\begin{align}
\partial_\rho\tensor{B}{^\rho^\mu_\mu}=\frac{1}{2}\ii\partial_\rho\left(\fdv{\mathcal{L}}{(\partial^\mu\Phi)}S^{\mu\rho}\Phi\right)\label{eq:conformal_tensor:partial_B}
\end{align}
and from \cref{eq:conformal_tensor:modified_tensor,eq:conformal_tensor:virial_def,eq:conformal_tensor:partial_B,eq:conformal_tensor:partial_X}, we have\mn{Remember the relation $$S^{\mu\nu}+S^{\nu\mu}=0.$$}
\begin{align}
\tensor{T}{^\mu_\mu}= & T^{\mu}_{c\ \mu}+\partial_\rho\tensor{B}{^\rho^\mu_\mu}+\frac{1}{2}\partial_\lambda\partial_\rho\tensor{X}{^\lambda^\rho^\mu_\mu}\notag \\
= & -\Delta\partial_\mu\left(\pdv{\mathcal{L}}{(\partial_\mu\Phi)}\Phi\right)+\frac{1}{2}\ii\partial_\rho\left(\fdv{\mathcal{L}}{(\partial^\mu\Phi)}S^{\mu\rho}\Phi\right)+\partial_\mu V^\mu\notag \\
= & \partial_\mu j^\mu_D\label{eq:conformal_tensor:j_D}
\end{align}
which means that the modified energy-momentum tensor $T_{\mu\nu}$ is traceless classically.
\end{proof}
$T^{\mu\nu}$ is equivalent\sidenote{conserved classically and can be used to replace $T^{\mu\nu}_c$ in the Ward identity.} to the canonical conserved current for translation $T^{\mu\nu}_c$ from the argument in \cpageref{eq:nother:equiv_current}, so we write the conserved current for translation as $T^{\mu\nu}$.
We can also rewrite the dilation current in \cref{eq:conformal_tensor:dilation_current_1} as\sidenote{This is only valid in theories satisfy \cref{eq:conformal_tenensor:condition}. You can check this current only differ from \cref{eq:conformal_tensor:dilation_current_1} by a divergenceless and antisymmetric term just like the case in \cref{eq:nother:equiv_current}.}
\begin{align}
j^\mu_D=\tensor{T}{^\mu_\nu}x^\nu\label{eq:conformal_tensor:j_scale}
\end{align}
and we also check that, in the same way, the conserved current for Lorentz transformation can be rewritten as
\begin{align}
j^{\mu\nu\rho}=T^{\mu\nu}x^\rho-T^{\mu\rho}x^\nu.\label{eq:conformal_tensor:j_lorentz}
\end{align}
\begin{remark}
We can directly use $T^{\mu\nu}$ in the Ward identities.
The above arguments are valid for $d>2$ since the definition of $X^{\lambda\rho\mu\nu}$ fails when $d>2$, but the result still holds in $d=2$ case.
We know of no general proof given only the scale invariance of the $d=2$ theory, but we will accept it.
And we will show that the energy-momentum tensor can be made traceless given the conformal invariance of the $d=2$ theory.
\end{remark}
\subsection{Conformal Invariance in Quantum Field Theory}
\subsubsection{Correlation Functions}
\paragraph{Two-point function}
Consider the two-point function
\begin{align}
\expval{\eqnmarkbox[blue]{node1}{\phi_1}(x_1)\eqnmarkbox[blue]{node2}{\phi_2}(x_2)}=\frac{1}{Z}\int\left[\dd{\Phi}\right]\phi_1(x_1)\phi_2(x_2)\exp(-S\left[\Phi\right]).
\end{align}\annotate[yshift=1em]{}{node1,node2}{Quasi-primary fields}
$\Phi$ denotes the set of all functionally independent fields in this theory and $S[\Phi]$ is the action, which we assume to be conformally invariant.
According to \cref{eq:TCF:correlation_transform}, we have
\begin{align}
\expval{\phi_1(x_1)\phi_2(x_2)}=\abs{\pdv{x'}{x}}^{\frac{\Delta_1}{d}}_{x=x_1}\abs{\pdv{x'}{x}}^{\frac{\Delta_2}{d}}_{x=x_2}\expval{\phi_1(x_1')\phi_2(x_2')}\label{eq:CIQFT:two_point_trans}
\end{align}
If we specialize to scale transformation $x\to\lambda x$ we obtain
\begin{align}
\expval{\phi_1(x_1)\phi_2(x_2)}=\lambda^{\Delta_1+\Delta_2}\expval{\phi_1(\lambda x_1)\phi_2(\lambda x_2)}.\label{eq:CIQFT:2cf}
\end{align}
Rotational and translational invariance require that
\begin{align}
\expval{\phi_1(x_1)\phi_2(x_2)}=f\left(\abs{x_1-x_2}\right)
\end{align}
and together with \cref{eq:CIQFT:2cf}, we have
\begin{align}
f(x)=\lambda^{\Delta_1+\Delta_2}f(\lambda x)
\end{align}
which implies
\begin{align}
\expval{\phi_1(x_1)\phi_2(x_2)}=\frac{\eqnmarkbox[blue]{node1}{C_{12}}}{\abs{x_1-x_2}^{\Delta_1+\Delta_2}}\label{eq:CIQFT:two_point_fix_1}
\end{align}\annotate[yshift=0.5em]{}{node1}{Constant coefficient}
Apart from scale invariance, we have special conformal transformations (SCT).
Recall that, for SCT
\begin{align}
\abs{\pdv{x'}{x}}=\frac{1}{(1-2b\cdot x+b^2 x^2)^d}.
\end{align}
Using \cref{eq:conformal_distance_trans,eq:CIQFT:two_point_fix_1,eq:CIQFT:two_point_trans}, we have
\begin{align}
\frac{C_{12}}{\abs{x_1-x_2}^{\Delta_1+\Delta_2}}=\frac{C_{12}}{\gamma_1^{\Delta_1}\gamma_2^{\Delta_2}}\frac{(\gamma_1\gamma_2)^{\frac{\Delta_1+\Delta_2}{2}}}{\abs{x_1-x_2}^{\Delta_1+\Delta_2}}\label{eq:CIQFT:2_point_constraint_1}
\end{align}
where $\gamma_i\equiv(1-2b\vdot x_i+b^2 x_i^2)$.
\Cref{eq:CIQFT:2_point_constraint_1} are satisfied only when $\Delta_1=\Delta_2$ or $C_{12}=0$, which implies
\begin{boxmath}{2-point function}
\begin{align}\label{eq:CIQFT:2_point_final}
\expval{\phi_1(x_1)\phi_2(x_2)}=\begin{cases}
\frac{C_{12}}{\abs{x_1-x_2}^{2\Delta_1}} & \qif\Delta_1=\Delta_2 \\
0 & \qif\Delta_1\neq\Delta_2.
\end{cases}
\end{align}
\end{boxmath}
\begin{remark}
\Cref{eq:CIQFT:2_point_final} shows that two quasi-primary fields are correlated only if they have the same scaling dimension.
\end{remark}
\paragraph{Three-point function}
We denote $x_{ij}\equiv\abs{x_i-x_j}$.
Covariance under rotations, translations and dilations fix the three point function to the following form
\begin{align}
\expval{\phi_1(x_1)\phi_2(x_2)\phi_3(x_3)}=\frac{\eqnmarkbox[blue]{node1}{C^{(abc)}_{123}}}{x^a_{12}x^b_{23}x^c_{13}}\label{eq:CIQFT:3_points_1}
\end{align}\annotate[yshift=0.5em]{}{node1}{Constant}
where $a$, $b$ and $c$ satisfy\sidenote{Actually, a sum (over $a$, $b$ and $c$) of such terms in \cref{eq:CIQFT:3_points_1} is also acceptable, as long as they satisfy \cref{eq:CIQFT:3_points_2} but later we will see only one term meets the requirement.}
\begin{align}
a+b+c=\Delta_1+\Delta_2+\Delta_3.\label{eq:CIQFT:3_points_2}
\end{align}
Under SCT, we have
\begin{align}
\frac{C^{(abc)}_{123}}{x^a_{12}x^b_{23}x^c_{13}}=\frac{C^{(abc)}_{123}}{\gamma^{\Delta_1}\gamma^{\Delta_2}\gamma_3^{\Delta_3}}\frac{(\gamma_1\gamma_2)^{\frac{a}{2}}(\gamma_2\gamma_3)^{\frac{b}{2}}(\gamma_1\gamma_3)^{\frac{c}{2}}}{x^a_{12}x^b_{23}x^c_{13}}
\end{align}
which gives
\begin{align}
a+c=2\Delta_1\quad a+b=2\Delta_2\quad b+c=2\Delta_3.\label{eq:CIQFT:3_point_3}
\end{align}
The unique solution to \cref{eq:CIQFT:3_point_3} is
\begin{subequations}
\begin{align}
a= & \Delta_1+\Delta_2-\Delta_3 \\
b= & \Delta_2+\Delta_3-\Delta_1 \\
c= & \Delta_3+\Delta_1-\Delta_2.
\end{align}
\end{subequations}
Therefore we have
\begin{boxmath}{3-point function}
\begin{align}
\expval{\phi_1(x_1)\phi_2(x_2)\phi_3(x_3)}=\frac{C_{123}}{x_{12}^{\Delta_1+\Delta_2-\Delta_3}x_{23}^{\Delta_2+\Delta_3-\Delta_1}x_{13}^{\Delta_3+\Delta_1-\Delta_2}}.\label{eq:CIQFT:3_points_final}
\end{align}
\end{boxmath}
\paragraph{Four-point function}
We cannot fix the form of four-point function only by symmetry since we can construct the conformally invariant anharmonic ratios with 4 points (see \cpageref{eq:anharmonic_ratio}).
\begin{remark}
For $n\geq4$, the $n$-point functions may have an arbitrary dependence on the anharmonic ratios.
\end{remark}
For example, the four-point function may have the following form
\begin{align}
\expval{\phi_1(x_1)\dots\phi_4(x_4)}=f\left(\frac{x_{12}x_{34}}{x_{13}x_{24}},\frac{x_{12}x_{34}}{x_{23}x_{14}}\right)\prod_{i<j}^4 x_{ij}^{\frac{\Delta}{3}-\Delta_i-\Delta_j}\label{eq:CIQFT:4_points}
\end{align}
where $\Delta\equiv\sum_{i=1}^4\Delta_i$.
\subsubsection{Ward Identities}
Now we will use \cref{eq:QFT:ward_identity} to derive the Ward identities for the conformal symmetry\sidenote{Do not forget the definition of $T^{\mu\nu}$ (see \cref{eq:conformal_tensor:modified_tensor}).}.
\paragraph{Translation invariance}
The corresponding current for translation is $T^{\mu\nu}$ (see \cref{subsubsec:conformal_em_tensor}) and the Ward identity is
\begin{align}
\partial_\mu\expval{\tensor{T}{^\mu_\nu}X}=-\sum_i\delta(x-x_i)\pdv{x^\nu_i}\expval{X}\label{eq:GCI:conformal_ward_1}
\end{align}
where we have used \cref{eq:QFT:ward_identity,eq:CST:translation_operator}.
$X$ is a product of $n$ local fields at coordinate $x_i$, $i=1,\dots,n$.
\paragraph{Lorentz invariance}
The corresponding conserved current can be written as (see \cref{subsubsec:conformal_em_tensor,eq:conformal_tensor:j_lorentz})
\begin{align}
j^{\mu\nu\rho}=T^{\mu\nu}x^\rho-T^{\mu\rho}x^\nu
\end{align}
and using \cref{eq:QFT:ward_identity,eq:CST:Lorentz_operator} we have the Ward identity
\begin{align}
\partial_\mu\expval{\left(T^{\mu\nu} x^\rho-T^{\mu\rho} x^\nu\right)X}=\sum_i\delta(x-x_i)\left[\left(x_i^\nu\partial_i^\rho-x_i^\rho\partial_i^\nu\right)\expval{X}-\ii S^{\nu\rho}_i\expval{X}\right].\label{eq:GCI:conformal_ward_lorentz_1}
\end{align}
Using \cref{eq:GCI:conformal_ward_1}, \cref{eq:GCI:conformal_ward_lorentz_1} becomes
\begin{align}
\expval{\left(T^{\rho\nu}-T^{\nu\rho}\right)X}=-\ii\sum_i\delta(x-x_i)S^{\nu\rho}_i\expval{X}.\label{eq:GCI:conformal_ward_2}
\end{align}
\paragraph{Scale invariance}
The conserved current for scale invariance is (see \cref{subsubsec:conformal_em_tensor,eq:conformal_tensor:j_scale})
\begin{align}
j_D^\mu=\tensor{T}{^\mu_\nu}x^\nu\label{eq:GCI:dilation_current}
\end{align}
and for a field of scaling dimension $\Delta$ the generator for dilation is (see \cref{eq:representation:dilation_operator})
\begin{align}
D=-\ii x^\nu\partial_\nu-\ii\Delta.\label{eq:GCI:dilation_operator}
\end{align}
Using \cref{eq:QFT:ward_identity,eq:GCI:dilation_current,eq:GCI:dilation_operator} we have the Ward identity
\begin{align}
\partial_\mu\expval{\tensor{T}{^\mu_\nu}x^\nu X}=-\sum_i\delta(x-x_i)\left(x_i^\nu\pdv{x_i^\nu}\expval{X}+\Delta_i\expval{X}\right)\label{eq:GCI:conformal_ward_3_before}
\end{align}
and using \cref{eq:GCI:conformal_ward_1}, \cref{eq:GCI:conformal_ward_3_before} becomes
\begin{align}
\expval{\tensor{T}{^\mu_\mu}X}=-\sum_i\delta(x-x_i)\Delta_i\expval{X}\label{eq:GCI:conformal_ward_3}.
\end{align}
In summary, we have
\begin{boxmath}{Conformal Ward Identity}
\begin{subequations}
\begin{align}
\partial_\mu\expval{\tensor{T}{^\mu_\nu}X} & =-\sum_i\delta(x-x_i)\pdv{x^\nu_i}\expval{X}\label{eq:GCI:conformal_ward_final_1} \\
\expval{\left(T^{\rho\nu}-T^{\nu\rho}\right)X} & =-\ii\sum_i\delta(x-x_i)S^{\nu\rho}_i\expval{X}\label{eq:GCI:conformal_ward_final_2} \\
\expval{\tensor{T}{^\mu_\mu}X} & =-\sum_i\delta(x-x_i)\Delta_i\expval{X}.\label{eq:GCI:conformal_ward_final_3}
\end{align}
\end{subequations}
\end{boxmath}