-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain_queue.py
258 lines (221 loc) · 13.2 KB
/
train_queue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from __future__ import print_function
import argparse
import torch
import torch.nn.functional as F
import torch.optim as optim
import math
from model_queue import LDGnet
import numpy as np
from utils_HSI import sample_gt, metrics, get_device, seed_worker
from datasets import get_dataset, HyperX, data_prefetcher
from datetime import datetime
import os
import torch.utils.data as data
import scipy.io as io
from sklearn.metrics import classification_report
import clip
import time
parser = argparse.ArgumentParser(description='PyTorch LDGnet')
parser.add_argument('--save_path', type=str, default="./results/",
help='the path to save the model')
parser.add_argument('--data_path', type=str, default='./datasets/Houston/',
help='the path to load the data')
parser.add_argument('--source_name', type=str, default='Houston13',
help='the name of the source dir')
parser.add_argument('--target_name', type=str, default='Houston18',
help='the name of the test dir')
parser.add_argument('--cuda', type=int, default=0,
help="Specify CUDA device (defaults to -1, which learns on CPU)")
# Training options
group_train = parser.add_argument_group('Training')
group_train.add_argument('--patch_size', type=int, default=13,
help="Size of the spatial neighbourhood (optional, if "
"absent will be set by the model)")
group_train.add_argument('--lr', type=float, default=1e-2,
help="Learning rate, set by the model if not specified.")
group_train.add_argument('--lambda_1', type=float, default=1e+0,
help="Regularization parameter, balancing the alignment loss.")
group_train.add_argument('--alpha', type=float, default=0.3,
help="Regularization parameter, controlling the contribution of both coarse-and fine-grained linguistic features.")
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.5)')
group_train.add_argument('--class_balancing', action='store_true',
help="Inverse median frequency class balancing (default = False)")
group_train.add_argument('--batch_size', type=int, default=256,
help="Batch size (optional, if absent will be set by the model")
group_train.add_argument('--test_stride', type=int, default=1,
help="Sliding window step stride during inference (default = 1)")
parser.add_argument('--seed', type=int, default=3667, metavar='S',
help='random seed ')
parser.add_argument('--log_interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--l2_decay', type=float, default=1e-4,
help='the L2 weight decay')
parser.add_argument('--num_epoch', type=int, default=200,
help='the number of epoch')
parser.add_argument('--num_trials', type=int, default=1,
help='the number of epoch')
parser.add_argument('--training_sample_ratio', type=float, default=0.8,
help='training sample ratio')
parser.add_argument('--re_ratio', type=int, default=5,
help='multiple of of data augmentation')
# Data augmentation parameters
group_da = parser.add_argument_group('Data augmentation')
group_da.add_argument('--flip_augmentation', action='store_true', default=False,
help="Random flips (if patch_size > 1)")
group_da.add_argument('--radiation_augmentation', action='store_true',default=False,
help="Random radiation noise (illumination)")
group_da.add_argument('--mixture_augmentation', action='store_true',default=False,
help="Random mixes between spectra")
parser.add_argument('--with_exploration', default=True, action='store_true',
help="See data exploration visualization")
args = parser.parse_args()
DEVICE = get_device(args.cuda)
def train(epoch, model, num_epoch, label_name, label_queue):
LEARNING_RATE = args.lr / math.pow((1 + 10 * (epoch - 1) / num_epoch), 0.75)
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
if (epoch-1)%10==0:
print('learning rate{: .4f}'.format(LEARNING_RATE) )
CNN_correct= 0
iter_source = iter(train_loader)
num_iter = len_src_loader
for i in range(1, num_iter):
model.train()
data_src, label_src = iter_source.next()
data_src, label_src = data_src.to(DEVICE), label_src.to(DEVICE)
label_src = label_src - 1
optimizer.zero_grad()
text = torch.cat([clip.tokenize(f'A hyperspectral image of {label_name[k]}').to(k.device) for k in label_src])
text_queue_1 = [label_queue[label_name[k]][0] for k in label_src]
text_queue_2 = [label_queue[label_name[k]][1] for k in label_src]
text_queue_1 = torch.cat([clip.tokenize(k).to(text.device) for k in text_queue_1])
text_queue_2 = torch.cat([clip.tokenize(k).to(text.device) for k in text_queue_2])
loss_coarse, loss_fine, label_src_pred = model(data_src, text, label_src, text_queue_1=text_queue_1, text_queue_2=text_queue_2)
loss_cls = F.nll_loss(F.log_softmax(label_src_pred, dim=1), label_src.long())
loss = loss_cls + args.lambda_1*((1-args.alpha)*loss_coarse + args.alpha*loss_fine)
loss.backward()
optimizer.step()
pred = label_src_pred.data.max(1)[1]
CNN_correct += pred.eq(label_src.data.view_as(pred)).cpu().sum()
if i % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]'.format( epoch, i * len(data_src), len_src_dataset, 100. * i / len_src_loader))
print('loss: {:.6f}, loss_cls: {:.6f}, loss_coarse: {:.6f}, loss_fine: {:.6f}'.format(
loss.item(), loss_cls.item(), loss_coarse.item(), loss_fine.item()))
CCN_acc = CNN_correct.item() / len_src_dataset
print('[epoch: {:4}] Train Accuracy: {:.4f} | train sample number: {:6}'.format(epoch, CCN_acc, len_src_dataset))
return model, CCN_acc
def test(model, label_name):
model.eval()
loss = 0
correct = 0
loss_coarse = 0
pred_list, label_list = [], []
with torch.no_grad():
for data, label in test_loader:
data, label = data.to(DEVICE), label.to(DEVICE)
label = label - 1
text = torch.cat([clip.tokenize(f'A hyperspectral image of {label_name[k]}').to(k.device) for k in label])
loss_coarse_, label_src_pred = model(data, text, label)
pred = label_src_pred.data.max(1)[1]
pred_list.append(pred.cpu().numpy())
label_list.append(label.cpu().numpy())
loss += F.nll_loss(F.log_softmax(label_src_pred, dim = 1), label.long()).item()
loss_coarse += loss_coarse_.item()
correct += pred.eq(label.data.view_as(pred)).cpu().sum()
loss /= len_tar_loader
loss_coarse /= len_tar_loader
print('Average test loss: {:.4f}, loss clip: {:.4f}, test Accuracy: {}/{} ({:.2f}%), | test sample number: {:6}\n'.format(
loss, loss_coarse, correct, len_tar_dataset, 100. * correct / len_tar_dataset, len_tar_dataset))
return correct, correct.item() / len_tar_dataset, pred_list, label_list
if __name__ == '__main__':
args.save_path = os.path.join(args.save_path)
# args.save_path = os.path.join(args.save_path, args.source_name+'to'+args.target_name)
acc_test_list, acc_maxval_test_list = np.zeros([args.num_trials,1]), np.zeros([args.num_trials,1])
seed_worker(args.seed)
img_src, gt_src, LABEL_VALUES_src, LABEL_QUEUE, IGNORED_LABELS, RGB_BANDS, palette = get_dataset(args.source_name,
args.data_path)
img_tar, gt_tar, LABEL_VALUES_tar, LABEL_QUEUE, IGNORED_LABELS, RGB_BANDS, palette = get_dataset(args.target_name,
args.data_path)
sample_num_src = len(np.nonzero(gt_src)[0])
sample_num_tar = len(np.nonzero(gt_tar)[0])
training_sample_tar_ratio = args.training_sample_ratio*args.re_ratio*sample_num_src/sample_num_tar
num_classes=gt_src.max()
N_BANDS = img_src.shape[-1]
hyperparams = vars(args)
hyperparams.update({'n_classes': num_classes, 'n_bands': N_BANDS, 'ignored_labels': IGNORED_LABELS,
'device': DEVICE, 'center_pixel': False, 'supervision': 'full'})
hyperparams = dict((k, v) for k, v in hyperparams.items() if v is not None)
r = int(hyperparams['patch_size']/2)+1
img_src=np.pad(img_src,((r,r),(r,r),(0,0)),'symmetric')
img_tar=np.pad(img_tar,((r,r),(r,r),(0,0)),'symmetric')
gt_src=np.pad(gt_src,((r,r),(r,r)),'constant',constant_values=(0,0))
gt_tar=np.pad(gt_tar,((r,r),(r,r)),'constant',constant_values=(0,0))
train_gt_src, _, training_set, _ = sample_gt(gt_src, args.training_sample_ratio, mode='random')
test_gt_tar, _, tesing_set, _ = sample_gt(gt_tar, 1, mode='random')
img_src_con, train_gt_src_con = img_src, train_gt_src
for i in range(args.re_ratio-1):
img_src_con = np.concatenate((img_src_con,img_src))
train_gt_src_con = np.concatenate((train_gt_src_con,train_gt_src))
hyperparams_train = hyperparams.copy()
hyperparams_train.update({'flip_augmentation': True, 'radiation_augmentation': True, 'mixture_augmentation': False})
train_dataset = HyperX(img_src_con, train_gt_src_con, **hyperparams_train)
g = torch.Generator()
g.manual_seed(args.seed)
train_loader = data.DataLoader(train_dataset,
batch_size=hyperparams['batch_size'],
pin_memory=True,
worker_init_fn=seed_worker,
generator=g,
shuffle=True)
test_dataset = HyperX(img_tar, test_gt_tar, **hyperparams)
test_loader = data.DataLoader(test_dataset,
pin_memory=True,
# worker_init_fn=seed_worker,
# generator=g,
batch_size=hyperparams['batch_size'])
len_src_loader = len(train_loader)
len_src_dataset = len(train_loader.dataset)
len_tar_dataset = len(test_loader.dataset)
len_tar_loader = len(test_loader)
print(hyperparams)
print("train samples :",len_src_dataset)
correct, acc = 0, 0
pretrained_dict = torch.load('./ViT-B-32.pt', map_location="cpu").state_dict()
embed_dim = pretrained_dict ["text_projection"].shape[1]
context_length = pretrained_dict ["positional_embedding"].shape[0]
vocab_size = pretrained_dict ["token_embedding.weight"].shape[0]
transformer_width = pretrained_dict ["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = 3
model = LDGnet(embed_dim,
img_src.shape[-1], hyperparams['patch_size'], gt_src.max(),
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers).to(DEVICE)
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in pretrained_dict:
del pretrained_dict[key]
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict and 'visual' not in k.split('.')}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'{total_trainable_params/(1024*1024):.2f}M training parameters.')
now_time = datetime.now()
time_str = datetime.strftime(now_time, '%m-%d_%H-%M-%S')
# log_dir = os.path.join(args.save_path, time_str+'_lr_'+str(args.lr)+'_lam1_'+str(args.lambda_1)+'_alpha_'+str(args.alpha))
# if not os.path.exists(log_dir):
# os.makedirs(log_dir)
for epoch in range(1, args.num_epoch + 1):
t1 = time.time()
model, CCN_train_acc = train(epoch, model, args.num_epoch, LABEL_VALUES_src, LABEL_QUEUE)
t2 = time.time()
print('epoch time:', t2-t1)
t_correct, CCN_test_acc, pred, label = test(model, LABEL_VALUES_src)
if t_correct > correct:
correct = t_correct
acc = CCN_test_acc
results = metrics(np.concatenate(pred), np.concatenate(label), ignored_labels=hyperparams['ignored_labels'], n_classes=gt_src.max())
print(classification_report(np.concatenate(pred),np.concatenate(label),target_names=LABEL_VALUES_tar))
print('source: {} to target: {} max correct: {} max accuracy{: .2f}%\n'.format(
args.source_name, args.target_name, correct, 100. * correct / len_tar_dataset ))
io.savemat(os.path.join(args.save_path, 'results_'+args.source_name+'_'+f'{CCN_test_acc*100 :.2f}'+'.mat'),
{'lr':args.lr, 'lambda_1':args.lambda_1,'alpha':args.alpha,'results': results})