forked from heavyai/heavydb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRowToColumnLoader.cpp
437 lines (411 loc) · 14.8 KB
/
RowToColumnLoader.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*
* Copyright 2017 MapD Technologies, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file RowToColumnLoader.cpp
* @author Michael <michael@mapd.com>
* @brief Based on StreamInsert code but using binary columnar format for inserting a
*stream of rows with optional transformations from stdin to a MapD table.
*
* Copyright (c) 2017 MapD Technologies, Inc. All rights reserved.
**/
#include "Import/RowToColumnLoader.h"
#include "Import/DelimitedParserUtils.h"
#include "Shared/Logger.h"
using namespace ::apache::thrift;
SQLTypes get_sql_types(const TColumnType& ct) {
switch (ct.col_type.type) {
case TDatumType::BIGINT:
return SQLTypes::kBIGINT;
case TDatumType::BOOL:
return SQLTypes::kBOOLEAN;
case TDatumType::DATE:
return SQLTypes::kDATE;
case TDatumType::DECIMAL:
return SQLTypes::kDECIMAL;
case TDatumType::DOUBLE:
return SQLTypes::kDOUBLE;
case TDatumType::FLOAT:
return SQLTypes::kFLOAT;
case TDatumType::INT:
return SQLTypes::kINT;
case TDatumType::STR:
// Tdataum is lossy here so need to look at precision to see if it was defined
if (ct.col_type.precision == 0) {
return SQLTypes::kTEXT;
} else {
return SQLTypes::kVARCHAR;
}
case TDatumType::TIME:
return SQLTypes::kTIME;
case TDatumType::TIMESTAMP:
return SQLTypes::kTIMESTAMP;
case TDatumType::SMALLINT:
return SQLTypes::kSMALLINT;
case TDatumType::TINYINT:
return SQLTypes::kTINYINT;
case TDatumType::POINT:
return SQLTypes::kPOINT;
case TDatumType::LINESTRING:
return SQLTypes::kLINESTRING;
case TDatumType::POLYGON:
return SQLTypes::kPOLYGON;
case TDatumType::MULTIPOLYGON:
return SQLTypes::kMULTIPOLYGON;
default:
LOG(FATAL) << "Unsupported TColumnType found, should not be possible";
return SQLTypes::kNULLT; // satisfy return-type warning
}
}
SQLTypeInfo create_sql_type_info_from_col_type(const TColumnType& ct) {
if (ct.col_type.is_array) {
return SQLTypeInfo(SQLTypes::kARRAY,
ct.col_type.precision,
ct.col_type.scale,
ct.col_type.nullable,
kENCODING_NONE,
0,
get_sql_types(ct));
} else {
// normal column
// NOTE(se)
// for geo types, the values inserted for the other fields
// may not be valid, but only the type field is ever used
return SQLTypeInfo(get_sql_types(ct),
ct.col_type.precision,
ct.col_type.scale,
ct.col_type.nullable,
kENCODING_NONE,
0,
SQLTypes::kNULLT);
}
}
// this function allows us to treat array columns natively in the rest of the code
// by creating fact column description
SQLTypeInfo create_array_sql_type_info_from_col_type(const TColumnType& ct) {
return SQLTypeInfo(get_sql_types(ct),
ct.col_type.precision,
ct.col_type.scale,
ct.col_type.nullable,
kENCODING_NONE,
0,
SQLTypes::kNULLT);
}
std::string RowToColumnLoader::print_row_with_delim(
std::vector<TStringValue> row,
const Importer_NS::CopyParams& copy_params) {
std::ostringstream out;
bool first = true;
for (TStringValue ts : row) {
if (first) {
first = false;
} else {
out << copy_params.delimiter;
}
out << ts.str_val;
}
return out.str();
}
// remove the entries from a row that has a failure during processing
// we must remove the entries that have been pushed onto the input_col so far
void remove_partial_row(size_t failed_column,
std::vector<SQLTypeInfo> column_type_info_vector,
std::vector<TColumn>& input_col_vec) {
for (size_t idx = 0; idx < failed_column; idx++) {
switch (column_type_info_vector[idx].get_type()) {
case SQLTypes::kARRAY:
input_col_vec[idx].nulls.pop_back();
input_col_vec[idx].data.arr_col.pop_back();
break;
case SQLTypes::kTEXT:
case SQLTypes::kCHAR:
case SQLTypes::kVARCHAR:
input_col_vec[idx].nulls.pop_back();
input_col_vec[idx].data.str_col.pop_back();
break;
case SQLTypes::kTINYINT:
case SQLTypes::kINT:
case SQLTypes::kBIGINT:
case SQLTypes::kSMALLINT:
case SQLTypes::kDATE:
case SQLTypes::kTIME:
case SQLTypes::kTIMESTAMP:
case SQLTypes::kNUMERIC:
case SQLTypes::kDECIMAL:
case SQLTypes::kBOOLEAN:
input_col_vec[idx].nulls.pop_back();
input_col_vec[idx].data.int_col.pop_back();
break;
case SQLTypes::kFLOAT:
case SQLTypes::kDOUBLE:
input_col_vec[idx].nulls.pop_back();
input_col_vec[idx].data.real_col.pop_back();
break;
case SQLTypes::kPOINT:
case SQLTypes::kLINESTRING:
case SQLTypes::kPOLYGON:
case SQLTypes::kMULTIPOLYGON:
input_col_vec[idx].nulls.pop_back();
input_col_vec[idx].data.str_col.pop_back();
break;
default:
LOG(FATAL) << "Trying to process an unsupported datatype, should be impossible";
}
}
}
void populate_TColumn(TStringValue ts,
SQLTypeInfo column_type_info,
TColumn& input_col,
const Importer_NS::CopyParams& copy_params) {
// create datum and push data to column structure from row data
switch (column_type_info.get_type()) {
case SQLTypes::kARRAY:
LOG(FATAL) << "Trying to process ARRAY at item level something is wrong";
break;
case SQLTypes::kTEXT:
case SQLTypes::kCHAR:
case SQLTypes::kVARCHAR:
case SQLTypes::kPOINT:
case SQLTypes::kLINESTRING:
case SQLTypes::kPOLYGON:
case SQLTypes::kMULTIPOLYGON:
if (ts.is_null) {
input_col.nulls.push_back(true);
input_col.data.str_col.emplace_back("");
} else {
input_col.nulls.push_back(false);
switch (column_type_info.get_type()) {
case SQLTypes::kCHAR:
case SQLTypes::kVARCHAR:
input_col.data.str_col.push_back(
ts.str_val.substr(0, column_type_info.get_precision()));
break;
case SQLTypes::kTEXT:
case SQLTypes::kPOINT:
case SQLTypes::kLINESTRING:
case SQLTypes::kPOLYGON:
case SQLTypes::kMULTIPOLYGON:
input_col.data.str_col.push_back(ts.str_val);
break;
default:
LOG(FATAL) << " trying to process a STRING transport type not handled "
<< column_type_info.get_type();
}
}
break;
case SQLTypes::kINT:
case SQLTypes::kBIGINT:
case SQLTypes::kSMALLINT:
case SQLTypes::kTINYINT:
case SQLTypes::kDATE:
case SQLTypes::kTIME:
case SQLTypes::kTIMESTAMP:
case SQLTypes::kNUMERIC:
case SQLTypes::kDECIMAL:
case SQLTypes::kBOOLEAN:
if (ts.is_null) {
input_col.nulls.push_back(true);
input_col.data.int_col.push_back(0);
} else {
input_col.nulls.push_back(false);
Datum d = StringToDatum(ts.str_val, column_type_info);
switch (column_type_info.get_type()) {
case SQLTypes::kINT:
case SQLTypes::kBOOLEAN:
input_col.data.int_col.push_back(d.intval);
break;
case SQLTypes::kBIGINT:
case SQLTypes::kNUMERIC:
case SQLTypes::kDECIMAL:
input_col.data.int_col.push_back(d.bigintval);
break;
case SQLTypes::kSMALLINT:
input_col.data.int_col.push_back(d.smallintval);
break;
case SQLTypes::kTINYINT:
input_col.data.int_col.push_back(d.tinyintval);
break;
case SQLTypes::kDATE:
case SQLTypes::kTIME:
case SQLTypes::kTIMESTAMP:
input_col.data.int_col.push_back(d.bigintval);
break;
default:
LOG(FATAL) << " trying to process an INT transport type not handled "
<< column_type_info.get_type();
}
}
break;
case SQLTypes::kFLOAT:
case SQLTypes::kDOUBLE:
if (ts.is_null) {
input_col.nulls.push_back(true);
input_col.data.real_col.push_back(0);
} else {
input_col.nulls.push_back(false);
Datum d = StringToDatum(ts.str_val, column_type_info);
switch (column_type_info.get_type()) {
case SQLTypes::kFLOAT:
input_col.data.real_col.push_back(d.floatval);
break;
case SQLTypes::kDOUBLE:
input_col.data.real_col.push_back(d.doubleval);
break;
default:
LOG(FATAL) << " trying to process a REAL transport type not handled "
<< column_type_info.get_type();
}
}
break;
default:
LOG(FATAL) << "Trying to process an unsupported datatype, should be impossible";
}
}
TRowDescriptor RowToColumnLoader::get_row_descriptor() {
return row_desc_;
};
bool RowToColumnLoader::convert_string_to_column(
std::vector<TStringValue> row,
const Importer_NS::CopyParams& copy_params) {
// create datum and push data to column structure from row data
uint curr_col = 0;
for (TStringValue ts : row) {
try {
switch (column_type_info_[curr_col].get_type()) {
case SQLTypes::kARRAY: {
std::vector<std::string> arr_ele;
Importer_NS::DelimitedParserUtils::parseStringArray(
ts.str_val, copy_params, arr_ele);
TColumn array_tcol;
for (std::string item : arr_ele) {
boost::algorithm::trim(item);
TStringValue tsa;
tsa.str_val = item;
tsa.is_null = (tsa.str_val.empty() || tsa.str_val == copy_params.null_str);
// now put into TColumn
populate_TColumn(
tsa, array_column_type_info_[curr_col], array_tcol, copy_params);
}
input_columns_[curr_col].nulls.push_back(false);
input_columns_[curr_col].data.arr_col.push_back(array_tcol);
break;
}
default:
populate_TColumn(
ts, column_type_info_[curr_col], input_columns_[curr_col], copy_params);
}
} catch (const std::exception& e) {
remove_partial_row(curr_col, column_type_info_, input_columns_);
// import_status.rows_rejected++;
LOG(ERROR) << "Input exception thrown: " << e.what()
<< ". Row discarded, issue at column : " << (curr_col + 1)
<< " data :" << print_row_with_delim(row, copy_params);
return false;
}
curr_col++;
}
return true;
}
RowToColumnLoader::RowToColumnLoader(const ThriftClientConnection& conn_details,
const std::string& user_name,
const std::string& passwd,
const std::string& db_name,
const std::string& table_name)
: user_name_(user_name)
, passwd_(passwd)
, db_name_(db_name)
, table_name_(table_name)
, conn_details_(conn_details) {
createConnection(conn_details_);
TTableDetails table_details;
client_->get_table_details(table_details, session_, table_name_);
row_desc_ = table_details.row_desc;
// create vector with column details
for (TColumnType ct : row_desc_) {
column_type_info_.push_back(create_sql_type_info_from_col_type(ct));
}
// create vector with array column details presented as real column for easier resue
// of othe code
for (TColumnType ct : row_desc_) {
array_column_type_info_.push_back(create_array_sql_type_info_from_col_type(ct));
}
// create vector for storage of the actual column data
for (TColumnType column : row_desc_) {
TColumn t;
input_columns_.push_back(t);
}
}
RowToColumnLoader::~RowToColumnLoader() {
closeConnection();
}
void RowToColumnLoader::createConnection(const ThriftClientConnection& con) {
client_.reset(new OmniSciClient(conn_details_.get_protocol()));
try {
client_->connect(session_, user_name_, passwd_, db_name_);
} catch (TOmniSciException& e) {
std::cerr << e.error_msg << std::endl;
} catch (TException& te) {
std::cerr << "Thrift error on connect: " << te.what() << std::endl;
}
}
void RowToColumnLoader::closeConnection() {
try {
client_->disconnect(session_); // disconnect from omnisci_server
} catch (TOmniSciException& e) {
std::cerr << e.error_msg << std::endl;
} catch (TException& te) {
std::cerr << "Thrift error on close: " << te.what() << std::endl;
}
}
void RowToColumnLoader::wait_disconnet_reconnnect_retry(
size_t tries,
Importer_NS::CopyParams copy_params) {
std::cout << " Waiting " << copy_params.retry_wait
<< " secs to retry Inserts , will try " << (copy_params.retry_count - tries)
<< " times more " << std::endl;
sleep(copy_params.retry_wait);
closeConnection();
createConnection(conn_details_);
}
void RowToColumnLoader::do_load(int& nrows,
int& nskipped,
Importer_NS::CopyParams copy_params) {
for (size_t tries = 0; tries < copy_params.retry_count;
tries++) { // allow for retries in case of insert failure
try {
client_->load_table_binary_columnar(session_, table_name_, input_columns_);
// client->load_table(session, table_name, input_rows);
nrows += input_columns_[0].nulls.size();
std::cout << nrows << " Rows Inserted, " << nskipped << " rows skipped."
<< std::endl;
// we successfully loaded the data, lets move on
input_columns_.clear();
// create vector for storage of the actual column data
for (TColumnType column : row_desc_) {
TColumn t;
input_columns_.push_back(t);
}
return;
} catch (TOmniSciException& e) {
std::cerr << "Exception trying to insert data " << e.error_msg << std::endl;
wait_disconnet_reconnnect_retry(tries, copy_params);
} catch (TException& te) {
std::cerr << "Exception trying to insert data " << te.what() << std::endl;
wait_disconnet_reconnnect_retry(tries, copy_params);
}
}
std::cerr << "Retries exhausted program terminated" << std::endl;
exit(1);
}