-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_clean.py
371 lines (333 loc) · 11.2 KB
/
main_clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# -*- coding: utf-8 -*-
"""
DEEP LEARNING FOR HYPERSPECTRAL DATA.
This script allows the user to run several deep models (and SVM baselines)
against various hyperspectral datasets. It is designed to quickly benchmark
state-of-the-art CNNs on various public hyperspectral datasets.
This code is released under the GPLv3 license for non-commercial and research
purposes only.
For commercial use, please contact the authors.
"""
# Python 2/3 compatiblity
from __future__ import division, print_function
import os
from common_utils.main_utils import Trainer
#os.environ["CUDA_VISIBLE_DEVICES"] = "3"
#os.environ["WORLD_SIZE"] = "1"
import torch
#
#import os
import argparse
import json
# Numpy, scipy, scikit-image, spectral
import numpy as np
# Visualization
import seaborn as sns
import sklearn.svm
# Torch
import torch
torch.set_float32_matmul_precision('medium')
import torch.utils.data as data
import visdom
from torchsummary import summary
from common_utils.kfold import CrossValidator
from datasets_utils.datasets import DATASETS_CONFIG, HyperX, get_dataset, open_file
from train_test.models_train_test import save_model, test, train
from models.get_model_util import get_model
from common_utils.utils import (build_dataset, compute_imf_weights, convert_from_color_,
convert_to_color_, display_dataset, display_predictions,
explore_spectrums, get_device, metrics, plot_spectrums,
sample_gt, show_results)
dataset_names = [
v["name"] if "name" in v.keys() else k for k, v in DATASETS_CONFIG.items()
]
# Argument parser for CLI interaction
parser = argparse.ArgumentParser(
description="Run deep learning experiments on" " various hyperspectral datasets"
)
parser.add_argument(
"--dataset", type=str, default=True, choices=dataset_names, help="To use stg"
)
parser.add_argument(
"--stg", type=str, default=True, help="Dataset to use."
)
parser.add_argument(
"--model",
type=str,
default=None,
help="Model to train. Available:\n"
"SVM (linear), "
"SVM_grid (grid search on linear, poly and RBF kernels), "
"baseline (fully connected NN), "
"hu (1D CNN), "
"hamida (3D CNN + 1D classifier), "
"lee (3D FCN), "
"chen (3D CNN), "
"li (3D CNN), "
"he (3D CNN), "
"luo (3D CNN), "
"sharma (2D CNN), "
"boulch (1D semi-supervised CNN), "
"liu (3D semi-supervised CNN), "
"mou (1D RNN)",
)
parser.add_argument(
"--folder",
type=str,
help="Folder where to store the "
"datasets (defaults to the current working directory).",
default="./Datasets/",
)
parser.add_argument(
"--cuda",
type=int,
default=-1,
help="Specify CUDA device (defaults to -1, which learns on CPU)",
)
parser.add_argument("--runs", type=int, default=1, help="Number of runs (default: 1)")
parser.add_argument(
"--restore",
type=str,
default=None,
help="Weights to use for initialization, e.g. a checkpoint",
)
# Dataset options
group_dataset = parser.add_argument_group("Dataset")
group_dataset.add_argument(
"--training_sample",
type=float,
default=0.1,
help="Percentage of samples to use for training (default: 10%)",
)
group_dataset.add_argument(
"--sampling_mode",
type=str,
help="Sampling mode" " (random sampling or disjoint, default: random)",
default="random",
)
group_dataset.add_argument(
"--train_set",
type=str,
default=None,
help="Path to the train ground truth (optional, this "
"supersedes the --sampling_mode option)",
)
group_dataset.add_argument(
"--test_set",
type=str,
default=None,
help="Path to the test set (optional, by default "
"the test_set is the entire ground truth minus the training)",
)
# Training options
group_train = parser.add_argument_group("Training")
group_train.add_argument(
"--epoch",
type=int,
help="Training epochs (optional, if" " absent will be set by the model)",
)
group_train.add_argument(
"--epoch_second", type=int, help="Training epochs after feature selection"
)
group_train.add_argument(
"--lam", type=float, help="lam for regularization in feature selection"
)
group_train.add_argument("--lr_factor", type=int, help="multiply lr by it")
group_train.add_argument(
"--patch_size",
type=int,
help="Size of the spatial neighbourhood (optional, if "
"absent will be set by the model)",
)
group_train.add_argument(
"--lr", type=float, help="Learning rate, set by the model if not specified."
)
group_train.add_argument(
"--class_balancing",
action="store_true",
help="Inverse median frequency class balancing (default = False)",
)
group_train.add_argument(
"--batch_size",
type=int,
help="Batch size (optional, if absent will be set by the model",
)
group_train.add_argument(
"--bands_amount",
type=int,
help="Bands amount",
)
group_train.add_argument(
"--test_stride",
type=int,
default=1,
help="Sliding window step stride during inference (default = 1)",
)
# Data augmentation parameters
group_da = parser.add_argument_group("Data augmentation")
group_da.add_argument(
"--flip_augmentation", action="store_true", help="Random flips (if patch_size > 1)"
)
group_da.add_argument(
"--radiation_augmentation",
action="store_true",
help="Random radiation noise (illumination)",
)
group_da.add_argument(
"--mixture_augmentation", action="store_true", help="Random mixes between spectra"
)
parser.add_argument(
"--with_exploration", action="store_true", help="See data exploration visualization"
)
parser.add_argument(
"--download",
type=str,
default=None,
nargs="+",
choices=dataset_names,
help="Download the specified datasets and quits.",
)
args = parser.parse_args()
CUDA_DEVICE = get_device(args.cuda)
# % of training samples
SAMPLE_PERCENTAGE = args.training_sample
# Data augmentation ?
FLIP_AUGMENTATION = args.flip_augmentation
RADIATION_AUGMENTATION = args.radiation_augmentation
MIXTURE_AUGMENTATION = args.mixture_augmentation
# Dataset name
DATASET = args.dataset
# Model name
MODEL = args.model
# Number of runs (for cross-validation)
N_RUNS = args.runs
# Spatial context size (number of neighbours in each spatial direction)
PATCH_SIZE = args.patch_size
# Add some visualization of the spectra ?
DATAVIZ = args.with_exploration
# Target folder to store/download/load the datasets
FOLDER = args.folder
# Number of epochs to run
EPOCH = args.epoch
# Number of epochs to run
EPOCH2 = args.epoch_second
STG_USE=args.stg
# lam for regularization
LAM = args.lam
# Sampling mode, e.g random sampling
SAMPLING_MODE = args.sampling_mode
# Pre-computed weights to restore
CHECKPOINT = args.restore
# Learning rate for the SGD
LEARNING_RATE = args.lr
# Automated class balancing
CLASS_BALANCING = args.class_balancing
# Training ground truth file
TRAIN_GT = args.train_set
# Testing ground truth file
TEST_GT = args.test_set
TEST_STRIDE = args.test_stride
BANDS_AMOUNT = args.bands_amount
if args.download is not None and len(args.download) > 0:
for dataset in args.download:
get_dataset(dataset, target_folder=FOLDER)
quit()
viz = visdom.Visdom(env=DATASET + " " + MODEL)
if not viz.check_connection:
print("Visdom is not connected. Did you run 'python -m visdom.server' ?")
def read_dict(filename):
with open(filename) as f:
data = f.read()
print("Data type before reconstruction : ", type(data))
# reconstructing the data as a dictionary
js = json.loads(data)
return js
# Load the dataset
img, gt, LABEL_VALUES, IGNORED_LABELS, RGB_BANDS, palette = get_dataset(DATASET, FOLDER)
# Number of classes
# N_CLASSES = len(LABEL_VALUES) - len(IGNORED_LABELS)
N_CLASSES = len(LABEL_VALUES)
# Number of bands (last dimension of the image tensor)
N_BANDS = img.shape[-1]
if palette is None:
# Generate color palette
palette = {0: (0, 0, 0)}
for k, color in enumerate(sns.color_palette("hls", len(LABEL_VALUES) - 1)):
palette[k + 1] = tuple(np.asarray(255 * np.array(color), dtype="uint8"))
invert_palette = {v: k for k, v in palette.items()}
'''
def convert_to_color(x):
return convert_to_color_(x, palette=palette)
def convert_from_color(x):
return convert_from_color_(x, palette=invert_palette)
'''
def get_hyperparams():
hyperparams = vars(args)
# Instantiate the experiment based on predefined networks
hyperparams.update(
{
"n_classes": N_CLASSES,
"n_bands": N_BANDS,
"ignored_labels": IGNORED_LABELS,
"device": CUDA_DEVICE,
}
)
hyperparams = dict((k, v) for k, v in hyperparams.items() if v is not None)
return hyperparams
def model_creator_func(**hyperparams):
# model, optimizer, loss, hyperparams
return get_model(MODEL, **hyperparams)
def add_or_append(key,value,res_dict):
if key not in res_dict:
res_dict[key] = [value]
else:
res_dict[key].append(value)
def nice_print(res_dict):
print("res_dict")
for key,value in res_dict.items():
print(key,"=",value)
if __name__ == '__main__':
#lm = LAM
hyperparams = get_hyperparams()
results = []
all_algo_n_bands_to_selection = read_dict(f'algo_bands_mapping_results_temp_{DATASET}.json')
train_gt, test_gt = sample_gt(gt, SAMPLE_PERCENTAGE, mode=SAMPLING_MODE)
train_gt, val_gt = sample_gt(train_gt, 0.999, mode="random")
# Generate the dataset
hyperparams["headstart_idx"] = None # if use_stg else n_bands_to_selection[str(n_selected_bands)]
hyperparams["lam"] = LAM
#cctor mess with hyperparams
#hyperparams1=dict(hyperparams)
trainer = Trainer(model_creator=lambda: model_creator_func(**hyperparams),mode_name=MODEL, img=img, gt=train_gt,
display=viz,device=CUDA_DEVICE,hyperparams1=hyperparams)
losses = {}
regs = {}
accs = {}
opt_to_gates = {}
#
x = 0.5
y = 2.1
step = 0.2
opt_with_lr_to_bands_acc={}
for lr in reversed([0.001]):
nice_print(opt_with_lr_to_bands_acc)
for lm in np.arange(x, y + step, step):
for opt in ['ADAM', 'DOG']:#,'DOG5','DOG']:#,'DOG8','DOG9','DOG10','DOG5','DOG4','SGD','ADAM']:
opt_with_lr_lam = f'{opt}_{lr}_{lm}'
short_key = f'{opt}_{lr}'
hyperparams["lam"] = lm
model, _, loss, hyperparams = get_model(MODEL, **hyperparams)
losses[opt_with_lr_lam], regs[opt_with_lr_lam] = trainer.train(net=model, optimizer_name=opt, criterion=loss, epoch=EPOCH,
lam=lm, lr=lr, display_iter=1000, device=torch.device('cuda'), display=viz)
acc, gates, gates_prob_one, gates_positive_prob = trainer.test(net=model)
accs[opt_with_lr_lam] = acc
opt_to_gates[opt_with_lr_lam] = gates_prob_one
if short_key not in opt_with_lr_to_bands_acc:
opt_with_lr_to_bands_acc[short_key]={}
add_or_append(gates_positive_prob,acc,opt_with_lr_to_bands_acc[short_key])
print(opt,lm,lr, "prob1", gates_prob_one, "prob_pos", gates_positive_prob, acc)
#print("losses", losses)
#print("regs", regs)
# #print("acc", acc)
nice_print(opt_with_lr_to_bands_acc)
trainer.draw_optimizer(losses, regs, accs, lm, 999)