-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
269 lines (205 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import tensorflow as tf
import numpy as np
import imageio
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from glob import glob
from tqdm import tqdm
from collections import OrderedDict
import data_tool
from networks import *
from utils import *
tf.app.flags.DEFINE_string('gpu', '0', 'GPU(s) to use')
tf.app.flags.DEFINE_string('dataset', 'mnist', 'Dataset to use')
tf.app.flags.DEFINE_string('divergence', 'KL', 'Divergence')
tf.app.flags.DEFINE_string('path', './results', 'Output path')
tf.app.flags.DEFINE_integer('seed', 1234, 'Random Seed')
tf.app.flags.DEFINE_integer('init_resolution', 4, 'Initial resolution of images')
tf.app.flags.DEFINE_integer('z_dim', 512, 'Size of latent vectors')
tf.app.flags.DEFINE_integer('dur_nimg', 600000, 'Number of images used for a phase')
tf.app.flags.DEFINE_integer('total_nimg', 18000000, 'Total number of images used for training')
tf.app.flags.DEFINE_integer('pool_size', 1, 'Number of batches of a pool')
tf.app.flags.DEFINE_integer('T', 1, 'Number of loops for moving particles')
tf.app.flags.DEFINE_float('step_size', 1.0, 'Step size for moving particles')
tf.app.flags.DEFINE_integer('U', 1, 'Number of loops for training D')
tf.app.flags.DEFINE_integer('L', 1, 'Number of loops for training G')
tf.app.flags.DEFINE_integer('num_row', 10, 'Number images in a line of image grid')
tf.app.flags.DEFINE_integer('num_line', 10, 'Number images in a row of image grid')
tf.app.flags.DEFINE_bool('use_gp', True, 'Use gradient penalty?')
tf.app.flags.DEFINE_float('coef_gp', 1., 'Coefficient of gradient penalty')
tf.app.flags.DEFINE_float('target_gp', 1., 'Target of gradient penalty')
tf.app.flags.DEFINE_float('coef_smoothing', 0.99, 'Coefficient of generator moving average')
tf.app.flags.DEFINE_bool('resume_training', False, 'Resume Training?')
tf.app.flags.DEFINE_integer('resume_num', 0, 'Resume number of images')
FLAGS = tf.app.flags.FLAGS
os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu
np.random.seed(FLAGS.seed)
tf.random.set_random_seed(FLAGS.seed)
def inferenceResolution(tfrecord_dir):
assert os.path.isdir(tfrecord_dir)
tfr_files = sorted(glob(os.path.join(tfrecord_dir, '*.tfrecords')))
assert len(tfr_files) >= 1
tfr_shapes = []
for tfr_file in tfr_files:
tfr_opt = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.NONE)
for record in tf.python_io.tf_record_iterator(tfr_file, tfr_opt):
tfr_shapes.append(data_tool.parse_tfrecord_np(record).shape)
break
max_shape = max(tfr_shapes, key=lambda shape: np.prod(shape))
resolution = max_shape[0]
assert max_shape[-1] in [1, 3]
num_channels = max_shape[-1]
if resolution <= 128:
num_features = 256
else:
num_features = 128
return num_channels, resolution, num_features
tfrecord_dir = os.path.join("datasets", FLAGS.dataset)
num_channels, resolution, num_features = inferenceResolution(tfrecord_dir)
out_path = os.path.join(FLAGS.path, '%s-%s' % (FLAGS.dataset, FLAGS.divergence))
if not os.path.exists(out_path):
os.makedirs(out_path)
batchsize_dict = {4: 256, 8: 256, 16: 128, 32: 64, 64: 32, 128: 16, 256: 8}
def lod(num_img):
ph_num = num_img // (2*FLAGS.dur_nimg)
remain_num = num_img - ph_num * (2*FLAGS.dur_nimg)
if np.log2(resolution/FLAGS.init_resolution) <= ph_num:
return 0.
elif remain_num <= FLAGS.dur_nimg:
return np.log2(resolution/FLAGS.init_resolution) - ph_num
else:
return np.log2(resolution/FLAGS.init_resolution) - ph_num - (remain_num - FLAGS.dur_nimg) / FLAGS.dur_nimg
def coef_div(d_score, coef=FLAGS.step_size):
if FLAGS.divergence == 'KL':
s = np.ones_like(d_score)
elif FLAGS.divergence == 'LogD':
s = 1 / (1 + np.exp(d_score))
elif FLAGS.divergence == 'JS': # ensure numerical stablity
s = 1 / (1 + 1/(1e-6 + np.exp(d_score)))
elif FLAGS.divergence == 'Jef': # ensure numerical stablity
s = np.clip(1 + np.exp(d_score), 1, 100)
return coef * np.reshape(s, [-1, 1, 1, 1])
################################ building graph ################################
x_p = tf.placeholder(dtype=tf.float32, shape=[None, resolution, resolution, num_channels], name='images')
z_p = tf.placeholder(dtype=tf.float32, shape=[None, FLAGS.z_dim], name='batch_latents')
Sz_p = tf.placeholder(dtype=tf.float32, shape=[None, FLAGS.z_dim], name='pool_latents')
G_z_p = tf.placeholder(dtype=tf.float32, shape=[None, resolution, resolution, num_channels], name='batch_particles')
G_Sz_p = tf.placeholder(dtype=tf.float32, shape=[None, resolution, resolution, num_channels], name='pool_particles')
lod_in = tf.placeholder(dtype=tf.float32, shape=[], name='level_of_details')
G_z = generator(z_p, lod_in, num_channels, resolution, FLAGS.z_dim, num_features)
Gs_z = generator(z_p, lod_in, num_channels, resolution, FLAGS.z_dim, num_features, is_smoothing = True)
# discriminator loss:
d_real_logits = discriminator(x_p, lod_in, num_channels, resolution, num_features)
d_fake_logits = discriminator(G_z_p, lod_in, num_channels, resolution, num_features, reuse=True)
loss_d_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_real_logits, labels=tf.ones_like(d_real_logits)))
loss_d_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_fake_logits, labels=tf.zeros_like(d_fake_logits)))
loss_d = loss_d_real + loss_d_fake
# computing gradient:
d_fake_grad = tf.gradients(d_fake_logits, G_z_p)[0]
# if use gradient penalty:
if FLAGS.use_gp:
mix_factors = tf.placeholder(dtype=tf.float32, shape=[None, 1, 1, 1], name='mix_factors')
mix_images = x_p + mix_factors * (G_z_p - x_p)
d_mix_logits = discriminator(mix_images, lod_in, num_channels, resolution, num_features, reuse=True)
d_mix_grad = tf.gradients(d_mix_logits, mix_images)[0]
mix_grad_norm = tf.sqrt(tf.reduce_sum(tf.square(d_mix_grad), axis=[1,2,3]))
mix_grad_penalty = tf.square(mix_grad_norm - FLAGS.target_gp)
loss_d += 0.5 * FLAGS.coef_gp * tf.reduce_mean(mix_grad_penalty)
# generator loss:
loss_g = 0.5 * tf.reduce_mean(tf.reduce_sum((G_z - G_Sz_p)**2))
# optimizers:
vars_g = [var for var in tf.trainable_variables() if var.name.startswith('generator')]
vars_d = [var for var in tf.trainable_variables() if var.name.startswith('discriminator')]
optimizer_d = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.0, beta2=0.99, epsilon=1e-8, name='opt_d')
update_d = optimizer_d.minimize(loss_d, var_list=vars_d)
optimizer_g = tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.0, beta2=0.99, epsilon=1e-8, name='opt_g')
update_g = optimizer_g.minimize(loss_g, var_list=vars_g)
reset_optimizer_d = tf.variables_initializer(optimizer_d.variables())
reset_optimizer_g = tf.variables_initializer(optimizer_g.variables())
################################ moving average of generator ################################
G_trainables = OrderedDict([(var.name[len('generator/'):], var) for var in tf.trainable_variables('generator' + '/')])
Gs_trainables = OrderedDict([(var.name[len('generator_smoothing/'):], var) for var in tf.trainable_variables('generator_smoothing' + '/')])
with tf.name_scope('generator_smoothing/'):
with tf.name_scope('smoothing'):
ops = []
for name, var in Gs_trainables.items():
new_value = G_trainables[name] + (var - G_trainables[name]) * FLAGS.coef_smoothing
ops.append(var.assign(new_value))
update_gs = tf.group(*ops)
################################ training ################################
saver = tf.train.Saver()
resolution_log2 = int(np.log2(resolution))
with tf.Session() as sess:
iterators = [data_tool.data_iterator(dataset=FLAGS.dataset, lod_in=lod, batch_size=batchsize_dict[2**(resolution_log2-lod)], resolution_log2=resolution_log2) for lod in range(int(np.log2(resolution/FLAGS.init_resolution))+1)]
if not FLAGS.resume_training:
sess.run(tf.global_variables_initializer())
num_img = 0
tick_kimg = 0
prev_lod = -1.0
else:
saver.restore(sess, os.path.join(out_path, 'networks-%08d.ckpt' % FLAGS.resume_num))
num_img = FLAGS.resume_num
tick_kimg = (num_img // 1000)
cur_lod = lod(num_img)
z_fixed = np.random.randn(10000, FLAGS.z_dim)
count = 0
while num_img <= FLAGS.total_nimg:
prev_lod = cur_lod
# get mini-batch size:
batch_size = batchsize_dict[2**int(resolution_log2-np.floor(cur_lod))]
# sample a latent pool and get particles:
Sz = np.random.randn(batch_size*FLAGS.pool_size, FLAGS.z_dim)
P = sess.run(G_z, feed_dict={z_p: Sz, lod_in: cur_lod})
# inner loop:
for t in range(FLAGS.T):
# optimize discriminator:
for u in range(FLAGS.U):
# get a batch of real images:
x = next(iterators[int(np.floor(cur_lod))])
x = process_real(x, cur_lod)
num_img += batch_size
# sample a batch of latents from the pool:
sample_index = np.random.choice(batch_size*FLAGS.pool_size, batch_size, replace=False)
# update
if FLAGS.use_gp:
mix_coef = np.random.uniform(0, 1, [batch_size, 1, 1, 1])
sess.run([update_d, update_gs], feed_dict={x_p: x, G_z_p: P[sample_index], mix_factors: mix_coef, lod_in: cur_lod})
else:
sess.run([update_d, update_gs], feed_dict={x_p: x, G_z_p: P[sample_index], lod_in: cur_lod})
# move particles
d_score = sess.run(d_fake_logits, feed_dict={G_z_p: P, lod_in: cur_lod})
grad = sess.run(d_fake_grad, feed_dict={G_z_p: P, lod_in: cur_lod})
P += coef_div(d_score) * grad
# optimize generator:
for l in range(FLAGS.L):
sess.run(update_g, feed_dict={z_p: Sz, G_Sz_p: P, lod_in: cur_lod})
cur_lod = lod(num_img)
# reset Adam optimizers states when increasing resolution:
if np.floor(cur_lod) != np.floor(prev_lod) or np.ceil(cur_lod) != np.ceil(prev_lod):
sess.run([reset_optimizer_d, reset_optimizer_g])
if (num_img // 1000) >= tick_kimg + 150:
count += 1
tick_kimg = (num_img // 1000)
real_loss, fake_loss = sess.run([loss_d_real, loss_d_fake], feed_dict={x_p: x, G_z_p: P[sample_index], lod_in: cur_lod})
G_loss = sess.run(loss_g, feed_dict={z_p: Sz, G_Sz_p: P, lod_in: cur_lod})
print('num_img: %d ' % num_img, ' | lod_in: %.2f' % cur_lod, '\n',
'D real loss: %.6f' % real_loss, ' | D fake loss: %.6f' % fake_loss, ' | Projection loss: %.6f' % G_loss)
# generate an image grid
gen_imgs = []
for i in tqdm(range(FLAGS.num_row*FLAGS.num_line)):
img = sess.run(Gs_z, feed_dict={z_p: np.expand_dims(z_fixed[i], axis=0), lod_in: cur_lod})
gen_imgs.append(img[0])
gen_imgs = np.array(gen_imgs)
gen_imgs = (gen_imgs + 1) / 2
imageio.imsave(os.path.join(out_path, 'fakes%06d.png' % (num_img // 1000)), montage(gen_imgs, grid=[FLAGS.num_row, FLAGS.num_line]))
# generate images for FID
if count == 4:
count = 0
if not os.path.exists(os.path.join(out_path, 'fakes%06d' % (num_img // 1000))):
os.makedirs(os.path.join(out_path, 'fakes%06d' % (num_img // 1000)))
for i in tqdm(range(10000)):
img = sess.run(Gs_z, feed_dict={z_p: np.expand_dims(z_fixed[i], axis=0), lod_in: cur_lod})
img = (img + 1) / 2
imageio.imsave(os.path.join(out_path, 'fakes%06d' % (num_img // 1000), '%05d.png' % i), np.rint(img[0]*255).clip(0, 255).astype(np.uint8))
# save model
saver.save(sess, os.path.join(out_path, 'networks-%08d.ckpt' % num_img))