forked from Xiaosz-s/Git_project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGCXL.py
262 lines (192 loc) · 7.54 KB
/
GCXL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#整个视觉代码仅用来识别圆和物料颜色
#注意:未识别色环对应颜色,色环颜色是固定的,由于视觉总会受光照影响所以仅可能将视觉承受压力缩小
import cv2
import numpy as np
from sklearn.cluster import KMeans
import serial
ser = serial.Serial("/dev/ttyS0",115200)
def Is_within_range(constant,min_val,max_val):
return min_val <= constant <= max_val
def nothing(x):
pass
def ColorDetector(img, lower=np.array([20, 50, 46]), upper=np.array([60, 255, 255])):
Hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask_green = cv2.inRange(Hsv, lower, upper)
res = cv2.bitwise_and(img, img, mask=mask_green)
return res
def get_dominant_color(image, k=3):
image = image.reshape((image.shape[0] * image.shape[1], 3))
kmeans = KMeans(n_clusters=k)
kmeans.fit(image)
dominant_colors = kmeans.cluster_centers_
return dominant_colors
cap = cv2.VideoCapture(0)
desired_width = 176
desired_height = 144
cap.set(cv2.CAP_PROP_FRAME_WIDTH,desired_width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT,desired_height)
cv2.createTrackbar('H_Low', 'image', 0, 255, nothing)
cv2.createTrackbar('H_High', 'image', 0, 255, nothing)
cv2.createTrackbar('S_Low', 'image', 0, 255, nothing)
cv2.createTrackbar('S_High', 'image', 0, 255, nothing)
cv2.createTrackbar('V_Low', 'image', 0, 255, nothing)
cv2.createTrackbar('V_High', 'image', 0, 255, nothing)
lower_green = np.array([44, 99, 108])
upper_green = np.array([85, 220, 255])
lower_red_1 = np.array([0, 50, 50])
upper_red_1 = np.array([10, 255, 255])
lower_red_2 = np.array([160, 50, 50])
upper_red_2 = np.array([179, 255, 255])
lower_blue = np.array([75, 100, 100])
upper_blue = np.array([155, 255, 255])
lower_greenc = np.array([33, 46, 46])
upper_greenc = np.array([85, 255, 255])
lower_redc_1 = np.array([0, 50, 50])
upper_redc_1 = np.array([10, 255, 255])
lower_redc_2 = np.array([160, 50, 50])
upper_redc_2 = np.array([179, 255, 255])
lower_bluec = np.array([100, 46, 46])
upper_bluec = np.array([155, 255, 255])
kernel = np.ones((3,3),np.uint8)
kernel1= np.ones((15,15),np.uint8)
min_contour_area = 600
center_x=0
center_y=0
greenS=0
redS=0
blueS=0
greenX=0
greenY=0
redX=0
redY=0
blueX=0
blueY=0
Send_color=0
sendX=0
sendY=0
while True:
Send_color=0
sendX=0
sendX=0
ret, frame = cap.read()
if not ret:
continue
eroded_frame=frame
dilate_frame = cv2.dilate(eroded_frame, kernel1)
#eroded_frame = cv2.erode(eroded_frame, kernel)
#eroded_frame = cv2.erode(eroded_frame, kernel)
#eroded_frame = cv2.erode(eroded_frame, kernel)
img = cv2.cvtColor(eroded_frame, cv2.COLOR_BGR2GRAY)
hsv = cv2.cvtColor(dilate_frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, lower_green, upper_green)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
blueS=0
greenS=0
redS=0
for contour in contours:
area = cv2.contourArea(contour)
if area > min_contour_area:
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 255, 255), 2)
greenS=w*h
greenX=int(x+w/2)
greenY=int(y+h/2)
mask = cv2.inRange(hsv, lower_red_1, upper_red_1)
mask1 = cv2.inRange(hsv, lower_red_2, upper_red_2)
mask = cv2.bitwise_or(mask,mask1)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
area = cv2.contourArea(contour)
if area > min_contour_area:
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 255, 255), 2)
redS=w*h
redX=int(x+w/2)
redY=int(y+h/2)
mask = cv2.inRange(hsv, lower_blue, upper_blue)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
area = cv2.contourArea(contour)
if area > min_contour_area:
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 255, 255), 2)
blueS=w*h
blueX=int(x+w/2)
blueY=int(y+h/2)
if(blueS>=redS and blueS>=greenS and blueS>=600):
Send_color=3
sendX=blueX
sendY=blueY
elif(redS>=blueS and redS>=greenS and redS>=600):
Send_color=1
sendX=redX
sendY=redY
elif(greenS>=redS and greenS>=blueS and greenS>=600):
Send_color=2
sendX=greenX
sendY=greenY
maskc = cv2.inRange(hsv, lower_redc_1, upper_redc_1)
mask1c = cv2.inRange(hsv, lower_redc_2, upper_redc_2)
Redc_mask = cv2.bitwise_or(maskc,mask1c)
Greenc_mask = cv2.inRange(hsv, lower_greenc, upper_greenc)
Bluec_mask = cv2.inRange(hsv, lower_bluec, upper_bluec)
dilated_frame = cv2.dilate(Redc_mask, kernel)
dilated_frame = cv2.dilate(dilated_frame, kernel)
dilated_frame = cv2.dilate(dilated_frame, kernel)
Red_img = dilated_frame
dilated_frame = cv2.dilate(Greenc_mask, kernel)
dilated_frame = cv2.dilate(dilated_frame, kernel)
dilated_frame = cv2.dilate(dilated_frame, kernel)
Green_img = dilated_frame
dilated_frame = cv2.dilate(Bluec_mask, kernel)
dilated_frame = cv2.dilate(dilated_frame, kernel)
dilated_frame = cv2.dilate(dilated_frame, kernel)
Blue_img = dilated_frame
#eroded_frame = cv2.erode(Redc_mask, kernel)
eroded_frame = cv2.erode(frame, kernel)
eroded_frame = cv2.erode(eroded_frame, kernel)
img=eroded_frame
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 100, param1=100, param2=50, minRadius=10, maxRadius=40)# x y r
Circle_color=0
if circles is not None:
for i in circles[0, : ]:
cv2.circle(img, (i[0], i[1]), 2, (255, 255, 255), 2)
i[0]=int(i[0])
i[1]=int(i[1])
i[2]=int(i[2])
diff=int(i[2]*1.1)
center_x = int(i[0])
center_y = int(i[1])
if(Is_within_range(center_y+diff,0,143) and Is_within_range(center_x+diff,0,175)):
Red_value=Red_img[center_y+diff,center_x+diff]
Green_value=Green_img[center_y+diff,center_x+diff]
Blue_value=Blue_img[center_y+diff,center_x+diff]
else:
Red_value=Red_img[center_y-diff,center_x-diff]
Green_value=Green_img[center_y-diff,center_x-diff]
Blue_value=Blue_img[center_y-diff,center_x-diff]
Circle_color=4
#print(Red_value,Green_value,Blue_value)
#print(Red_img[center_y,center_x],Green_img[center_y,center_x],Blue_img[center_y,center_x])
if(Red_value==255):
Circle_color=1
elif(Green_value==255):
Circle_color=2
elif(Blue_value==255):
Circle_color=3
print(Circle_color)
#cv2.imshow('Redc_mask', Redc_mask)
#cv2.imshow('Greenc_mask', Greenc_mask)
#cv2.imshow('Bluec_mask', Bluec_mask)
#cv2.imshow('Red_img', Red_img)
#cv2.imshow('Blue_img', Blue_img)
#cv2.imshow('Green_img', Green_img)
#cv2.imshow('img', img)
mystr=bytearray([0xff,Circle_color,center_x,center_y,Send_color,sendY,sendX])
print(Circle_color,center_x,center_y,Send_color,sendY,sendX)
ser.write(mystr)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()