-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGraphical Game Theory Simulation.py
327 lines (268 loc) · 15.9 KB
/
Graphical Game Theory Simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from matplotlib.lines import Line2D
import logging
import random
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Define learning algorithms as classes
class TitForTat:
def __init__(self):
self.cooperate = True
def play(self, opponent_cooperate):
return self.cooperate
def update(self, opponent_cooperate):
self.cooperate = opponent_cooperate
class RandomPlay:
def __init__(self):
pass
def play(self, opponent_cooperate=None):
return random.choice([True, False])
def update(self, opponent_cooperate):
pass
class Pavlov:
def __init__(self):
self.cooperate = True
def play(self, opponent_cooperate=None):
return self.cooperate
def update(self, opponent_cooperate):
if opponent_cooperate:
self.cooperate = not self.cooperate
class FictitiousPlay:
def __init__(self):
self.cooperate_count = 0
self.defect_count = 0
def play(self, opponent_cooperate=None):
return self.cooperate_count > self.defect_count
def update(self, opponent_cooperate):
if opponent_cooperate:
self.cooperate_count += 1
else:
self.defect_count += 1
class QLearning:
def __init__(self, learning_rate=0.1, discount_factor=0.9):
self.learning_rate = learning_rate
self.discount_factor = discount_factor
self.q_table = {}
def play(self, state):
if state not in self.q_table:
self.q_table[state] = 0.5 # Initial value for unknown states
return random.random() < self.q_table[state]
def update(self, state, reward, next_state):
if state not in self.q_table:
self.q_table[state] = 0.5 # Initial value for unknown states
if next_state not in self.q_table:
self.q_table[next_state] = 0.5 # Initial value for unknown states
max_next_q = max(self.q_table[next_state], 0.5) # Assume unknown states have value of 0.5
self.q_table[state] += self.learning_rate * (reward + self.discount_factor * max_next_q - self.q_table[state])
class PlayerSimulation:
def __init__(self, num_players=4, box_size=3, speed=0.1, interaction_distance=0.3, new_players_probability=0.05, market_crash_probability=0.03, recession_depression_occurrence_probability=0.01):
self.num_players = num_players
self.box_size = box_size
self.speed = speed
self.interaction_distance = interaction_distance
self.new_players_probability = new_players_probability
self.market_crash_probability = market_crash_probability
self.recession_depression_occurrence_probability = recession_depression_occurrence_probability
# Initialize players attributes
self.players_sizes = np.random.randint(10, 25, size=num_players)
self.players_positions = np.random.rand(num_players, 2) * box_size
self.players_strategies = [random.choice([TitForTat(), RandomPlay(), Pavlov(), FictitiousPlay(), QLearning()]) for _ in range(num_players)]
self.players_memory = np.zeros((num_players, num_players))
self.interaction_counter = 0
self.iteration_counter = 0
self.event_duration = 0
self.rare_event_counter = 0
self.players_colors = np.random.rand(num_players, 3)
# Initialize variables for tracking player numbers and defeated players
self.next_players_number = num_players + 1
self.defeated_players_indices = set()
# Initialize the plot
self.fig, self.ax = plt.subplots()
self.ax.set_xlim(0, box_size)
self.ax.set_ylim(0, box_size)
self.players = self.ax.scatter(self.players_positions[:, 0], self.players_positions[:, 1], c=self.players_colors)
# Initialize legend
self.legend_elements = []
self.update_legend()
self.legend = self.ax.legend(handles=self.legend_elements, loc='upper left', title='Player Legend')
# Initialize animation
self.ani = FuncAnimation(self.fig, self.update, frames=range(100), blit=True, interval=50)
def rare_event(self):
# Check for stock market occurence
if np.random.rand() < self.market_crash_probability and self.event_duration == 0:
self.rare_event_counter +=1
logging.info("A stock market crash has occurred!") # Stock market crash occurrence
for i in range(len(self.players_sizes)):
percentage = np.random.uniform(0.25, 0.5)
self.players_sizes[i] -= self.players_sizes[i] * percentage
self.event_duration = 1
# Check for recession or depression occurrence
if np.random.rand() < self.recession_depression_occurrence_probability and self.event_duration == 0:
event_type = np.random.choice(["recession", "depression"]) # Randomly choose between recession and depression
if event_type == "recession":
self.rare_event_counter +=1
logging.info("A recession has occurred!") # Recession occurrence
for _ in range(2):
for i in range(len(self.players_sizes)):
percentage = np.random.uniform(0.05, 0.15)
self.players_sizes[i] -= self.players_sizes[i] * percentage
logging.info("The recession has ended!") # Recession end occurrence
else:
self.rare_event_counter +=1
logging.info("A depression has occurred!") # Depression occurrence
for _ in range(6):
for i in range(len(self.players_sizes)):
percentage = np.random.uniform(0.15, 0.3)
self.players_sizes[i] -= self.players_sizes[i] * percentage
logging.info("The depression has ended!") # Depression end occurrence
def remove_defeated_players(self):
for idx in list(self.defeated_players_indices):
players_label = f'Player {idx + 1}: Size {self.players_sizes[idx]}' if self.players_sizes[idx] > 0 else 'Defeated'
players_index = next((i for i, handle in enumerate(self.legend_elements) if handle.get_label() == players_label), None)
if players_index is not None:
self.legend_elements.pop(players_index)
logging.info(f"Player {idx+1} remains defeated.")
self.defeated_players_indices.remove(idx) # Remove players from defeated indices set
else:
logging.warning(f"Player {idx+1} not found in legend elements.")
# Remove the players from defeated indices if it's not found in legend elements
self.defeated_players_indices.remove(idx)
def update_legend(self):
legend_elements = []
for i in range(self.num_players):
size = self.players_sizes[i]
if size > 0:
legend_elements.append(Line2D([0], [0], marker='o', color='w', label=f'Player {i+1}: Size {size}', markerfacecolor=self.players_colors[i]))
else:
legend_elements.append(Line2D([0], [0], marker='o', color='w', label=f'Player {i+1}: Defeated', markerfacecolor='black', markersize=5))
# Add legend elements for interactions, iterations, and total value
legend_elements.append(Line2D([0], [0], color='w', lw=1, label=f'Interactions: {self.interaction_counter}'))
legend_elements.append(Line2D([0], [0], color='w', lw=1, label=f'Iterations: {self.iteration_counter}'))
legend_elements.append(Line2D([0], [0], color='w', lw=1, label=f'Total Value: {sum(self.players_sizes)}'))
legend_elements.append(Line2D([0], [0], color='w', lw=1, label=f'Rare Events: {self.rare_event_counter}'))
self.legend_elements = legend_elements
self.legend = self.ax.legend(handles=legend_elements, loc='upper left', title='Player Legend')
def update(self, frame):
self.iteration_counter += 1
self.rare_event()
# Check if a new player spawns
if np.random.rand() < self.new_players_probability:
if self.num_players < 10:
self.num_players += 1
new_players_size = np.random.randint(10, 25)
self.players_sizes = np.append(self.players_sizes, new_players_size)
self.players_colors = np.vstack([self.players_colors, np.random.rand(1, 3)])
self.players_strategies.append(random.choice([TitForTat(), RandomPlay(), Pavlov(), FictitiousPlay(), QLearning()]))
self.players_memory = np.pad(self.players_memory, ((0, 1), (0, 1)), mode='constant') # Expand player memory
new_players_position = np.random.rand(1, 2) * self.box_size
self.players_positions = np.vstack([self.players_positions, new_players_position])
logging.info(f"Player {self.next_players_number} has been added.")
self.next_players_number += 1
self.remove_defeated_players()
# Check if a player has been defeated and add a new player in the next iteration
if self.defeated_players_indices:
self.num_players += 1
new_players_size = np.random.randint(10, 25)
self.players_sizes = np.append(self.players_sizes, new_players_size)
self.players_colors = np.vstack([self.players_colors, np.random.rand(1, 3)])
self.players_strategies.append(random.choice([TitForTat(), RandomPlay(), Pavlov(), FictitiousPlay(), QLearning()]))
self.players_memory = np.pad(self.players_memory, ((0, 1), (0, 1)), mode='constant') # Expand player memory
new_players_position = np.random.rand(1, 2) * self.box_size
self.players_positions = np.vstack([self.players_positions, new_players_position])
logging.info(f"A new player has been added after another player was defeated.")
# Clear defeated player indices after adding a new player
self.defeated_players_indices = set()
for i in range(self.num_players):
self.players_positions[i] += np.random.uniform(-self.speed, self.speed, size=2)
self.players_positions[i] = np.clip(self.players_positions[i], 0, self.box_size)
for i in range(self.num_players):
for j in range(i + 1, self.num_players):
distance = np.linalg.norm(self.players_positions[i] - self.players_positions[j])
if distance < self.interaction_distance and self.players_sizes[i] > 0 and self.players_sizes[j] > 0:
self.interaction_counter += 1
cooperate_i = self.players_strategies[i].play(self.players_memory[i, j])
cooperate_j = self.players_strategies[j].play(self.players_memory[j, i])
self.players_memory[i, j] = cooperate_i
self.players_memory[j, i] = cooperate_j
if cooperate_i and cooperate_j:
self.players_sizes[i] += 3
self.players_sizes[j] += 3
logger.info(f"Player {i+1} and Player {j+1} cooperated!")
elif cooperate_i and not cooperate_j:
self.players_sizes[i] -= 2
self.players_sizes[j] += 5
logger.info(f"Player {i+1} cooperated but Player {j+1} defected.")
elif not cooperate_i and cooperate_j:
self.players_sizes[i] += 5
self.players_sizes[j] -= 2
logger.info(f"Player {i+1} defected when Player {j+1} cooperated.")
else:
self.players_sizes[i] -= 5
self.players_sizes[j] -= 5
logger.info(f"Player {i+1} and Player {j+1} defected!")
self.players_sizes = np.maximum(self.players_sizes, 0)
if self.players_sizes[i] >= 0.25 * sum(self.players_sizes):
self.players_sizes[j] //= 2
redistributed_value = self.players_sizes[j] // (self.num_players - 1)
self.players_sizes += redistributed_value
logger.info(f"Antitrust scrutiny policy applied. Player {j+1} got its size redistributed.")
if self.players_sizes[i] >= 2 * self.players_sizes[j]:
logger.info(f"Player {i+1} consumed Player {j+1} as it was twice as big.")
self.players_sizes[j] = 0
if np.random.rand() < 0.5 and self.players_sizes[j] <= 0:
recovered_amount = np.random.randint(10, 25) # Random amount of recovery
self.players_sizes[j] = recovered_amount
logging.info(f"The Government has bailed Player {j+1} with size {recovered_amount}.") # Skip spawning a new Player if this Player recovers
else:
self.skip_new_players_spawn = True
self.defeated_players_indices.add(j)
elif self.players_sizes[j] >= 2 * self.players_sizes[i]:
logger.info(f"Player {j+1} consumed Player {i+1} as it was twice as big.")
self.players_sizes[i] = 0
self.defeated_players_indices.add(i)
if np.random.rand() < 0.5 and self.players_sizes[i] <= 0:
recovered_amount = np.random.randint(10, 25) # Random amount of recovery
self.players_sizes[i] = recovered_amount
logging.info(f"The Government has bailed Player {i+1} with size {recovered_amount}.") # Skip spawning a new Player if this Player recovers
else:
self.skip_new_players_spawn = True
self.players.set_offsets(self.players_positions)
self.players.set_sizes(self.players_sizes)
self.update_legend()
self.legend = self.ax.legend(handles=self.legend_elements, loc='center right', title='Player Legend', bbox_to_anchor=(1.04, 0.5), borderaxespad=0)
return self.players, self.legend
class YourClass:
def __init__(self):
self.num_players = 0
self.strategy_names = {
0: "TitForTat",
1: "RandomPlay",
2: "Pavlov",
3: "FictitiousPlay",
4: "QLearning"
}
self.players_strategies = {}
def assign_strategies(self):
available_strategies = list(self.strategy_names.keys())
self.players_strategies = {f"Player {i+1}": random.choice(available_strategies) for i in range(self.num_players)}
def gather_strategies(self):
return {player: self.strategy_names.get(strategy, 'Unknown Strategy') for player, strategy in self.players_strategies.items()}
def display_strategies(self):
strategies = self.gather_strategies()
print(strategies)
# Instantiate YourClass
your_instance = YourClass()
# Set the number of players
your_instance.num_players = 20
# Assign strategies to players
your_instance.assign_strategies()
# Display the assigned strategies
your_instance.display_strategies()
# Set up logging configuration
logging.basicConfig(level=logging.INFO)
# Create PlayerSimulation instance
player_simulation = PlayerSimulation()
# Show the plot
plt.show()