This repository has been archived by the owner on Jun 18, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathModes.py
executable file
·138 lines (113 loc) · 5.83 KB
/
Modes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!python
# Define all the shared constants among the scripts
import configparser
import os
from collections import OrderedDict
# MAX_PATCHES = 10 # after 10 patches we consider the data is too old
class Base_Mode:
def __init__(self, learning_patches=None):
if learning_patches is None:
learning_patches = []
self.learning_patches = learning_patches
# Downloader+
self.config = configparser.ConfigParser()
self.config.read('config.ini')
self.DATABASE = self.config['PARAMS']['database']
self.PATCHES_TO_DOWNLOAD = self.config['PARAMS']['download_patches'].split(',')
self.LEAGUES = [league for (league, enabled) in self.config['LEAGUES'].items() if enabled == 'yes']
self.REGIONS = [region for (region, enabled) in self.config['REGIONS'].items() if enabled == 'yes']
# Extractor+
self.DATA_LINES = 100000
# self.GAME_FILES = os.listdir(os.path.join(self.DATABASE, 'patches'))
self.CHAMPIONS_ID = OrderedDict([(champ_name, int(champ_id)) for (champ_name, champ_id) in self.config['CHAMPIONS'].items()])
self.CHAMPIONS_LABEL = self.config['PARAMS']['sortedChamps'].split(',')
# Processing+
self.SAVE = 1000
self.CHAMPIONS_SIZE = len(self.CHAMPIONS_LABEL)
# self.PATCHES = list(map(lambda x: x.replace('.', '_'), os.listdir(os.path.join(self.DATABASE, 'patches'))))
# self.PATCHES = sorted(self.PATCHES, key=lambda x: tuple(map(int, x.split('_'))))
# self.PATCHES = self.PATCHES[-MAX_PATCHES:]
# self.PATCHES.extend([None] * (MAX_PATCHES - len(self.PATCHES)))
self.PATCHES = list(map(lambda x: x.replace('.', '_'), learning_patches))
self.PATCHES_SIZE = len(self.PATCHES)
self.CURRENT_PATCH = self.PATCHES_SIZE * [0]
self.CURRENT_PATCH[-1] = 1 # Lastest patch
self.OUTPUT_SIZE = 1
# LEARNING+
self.CKPT_DIR = os.path.join(self.DATABASE, 'models')
# BESTPICKS+
self.ROLES_CHAMP = self.config['ROLES']
self.BP_ROLES = ['...', 'Top', 'Jungle', 'Mid', 'Carry', 'Support']
self.BP_CHAMPIONS = ['...']
self.BP_CHAMPIONS.extend(sorted(self.CHAMPIONS_LABEL))
self.BP_TEAMS = ['...', 'Blue', 'Red']
# data
self.EXTRACTED_FILE = os.path.join(self.DATABASE, 'extracted.txt') # shared among the implementations
self.EXTRACTED_DIR = os.path.join(self.DATABASE, 'extracted')
self.COLUMNS = []
self.COLUMNS.extend('s_' + champ_name for champ_name in self.CHAMPIONS_LABEL)
self.COLUMNS.extend('p_' + champ_name for champ_name in self.CHAMPIONS_LABEL)
self.COLUMNS.append('patch')
self.COLUMNS.append('win') # blue team pov
self.COLUMNS.append('file') # makes easier to read data files
self.DTYPE = {}
self.DTYPE.update({'s_' + champ_name: str for champ_name in self.CHAMPIONS_LABEL})
self.DTYPE.update({'p_' + champ_name: str for champ_name in self.CHAMPIONS_LABEL})
self.DTYPE['patch'] = str
self.DTYPE['win'] = int
self.DTYPE['file'] = str
def __str__(self):
return 'Base'.format()
def __repr__(self):
return 'Base_Mode()'.format()
# The main mode. It contains all the information you can get from a draft
# Each champion status is caracterized by 2 values:
# Available, Blue, Red (status)
# Top, Jungle, Mid, Carry, Support (position)
class ABR_TJMCS_Mode(Base_Mode):
def __init__(self, learning_patches=None):
super().__init__(learning_patches)
self.PREPROCESSED_DIR = os.path.join(self.DATABASE, 'data_ABR_TJMCS')
self.TRAINING_DIR = os.path.join(self.DATABASE, 'training_ABR_TJMCS')
self.TESTING_DIR = os.path.join(self.DATABASE, 'testing_ABR_TJMCS')
self.CHAMPIONS_STATUS = 'ABR'
self.CHAMPIONS_POSITION = 'TJMCS'
self.INPUT_SIZE = len(self.CHAMPIONS_LABEL) * (len(self.CHAMPIONS_STATUS) + len(self.CHAMPIONS_POSITION)) + len(self.PATCHES)
def row_data(self, state, with_output=True, current_patch=False):
row_data = []
row_data.extend([1 if state['s_' + self.CHAMPIONS_LABEL[k]] == s else 0 for s in self.CHAMPIONS_STATUS for k in range(self.CHAMPIONS_SIZE)])
row_data.extend([1 if state['p_' + self.CHAMPIONS_LABEL[k]] == s else 0 for s in self.CHAMPIONS_POSITION for k in range(self.CHAMPIONS_SIZE)])
if current_patch:
row_data.extend(self.CURRENT_PATCH)
else:
row_data.extend([1 if state['patch'] == self.PATCHES[k] else 0 for k in range(self.PATCHES_SIZE)])
if with_output:
row_data.append(state['win'])
return row_data
def __str__(self):
return 'ABR_TJMCS'
def __repr__(self):
return 'ABR_TJMCS_Mode()'
# Minimalist mode, without roles
class ABR_Mode(Base_Mode):
def __init__(self, learning_patches=None):
super().__init__(learning_patches)
self.PREPROCESSED_DIR = os.path.join(self.DATABASE, 'data_ABR')
self.TRAINING_DIR = os.path.join(self.DATABASE, 'training_ABR')
self.TESTING_DIR = os.path.join(self.DATABASE, 'testing_ABR')
self.CHAMPIONS_STATUS = 'ABR'
self.INPUT_SIZE = len(self.CHAMPIONS_LABEL) * len(self.CHAMPIONS_STATUS) + len(self.PATCHES)
def row_data(self, state, with_output=True, current_patch=False):
row_data = []
row_data.extend([1 if state['s_' + self.CHAMPIONS_LABEL[k]] == s else 0 for s in self.CHAMPIONS_STATUS for k in range(self.CHAMPIONS_SIZE)])
if current_patch:
row_data.extend(self.CURRENT_PATCH)
else:
row_data.extend([1 if state['patch'] == self.PATCHES[k] else 0 for k in range(self.PATCHES_SIZE)])
if with_output:
row_data.append(state['win'])
return row_data
def __str__(self):
return 'ABR'
def __repr__(self):
return 'ABR_Mode()'