This repository has been archived by the owner on Jun 18, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathLearner.py
executable file
·140 lines (115 loc) · 5.17 KB
/
Learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!python
# Build and train a neural network to predict the game result
import os
import random
import keras
import Modes
import Networks
import sys
import pandas as pd
import numpy as np
np.set_printoptions(formatter={'float_kind': lambda x: "%.2f" % x}, linewidth=200)
class dataCollector:
def __init__(self, mode, batchSize, partial_drafts=True):
self.mode = mode
self.batchSize = batchSize
self.partial_drafts = partial_drafts
self.i = 0
if keras.backend.learning_phase() == 1: # training phase
self.data_files = [os.path.join(mode.TRAINING_DIR, f) for f in os.listdir(mode.TRAINING_DIR)]
elif keras.backend.learning_phase() == 0:
self.data_files = [os.path.join(mode.TESTING_DIR, f) for f in os.listdir(mode.TESTING_DIR)]
else:
raise Exception('Unknown flag {}'.format(keras.backend.learning_phase()))
random.shuffle(self.data_files)
file = self.data_files.pop()
self.df = pd.read_csv(file).sample(frac=1).reset_index(drop=True)
def batchGenerator(self):
while True:
j = min(self.i + self.batchSize, len(self.df))
if self.partial_drafts:
x = self.df.iloc[self.i:j, :-1].values.tolist()
y = self.df.iloc[self.i:j, -1:].values.tolist() # last column is the win value
else:
data = self.df.iloc[self.i:j, :].values.tolist()
x = []
y = []
start = len(self.mode.CHAMPIONS_STATUS) * self.mode.CHAMPIONS_SIZE
end = start + len(self.mode.CHAMPIONS_POSITION) * self.mode.CHAMPIONS_SIZE
for line in data:
# we count how many positions have been set, for a full draft it's 10
if line[start:end].count(1) == 10:
x.append(line[:-1])
y.append(line[-1:])
if j < len(self.df):
self.i = j
else:
self.i = 0
if self.data_files:
self.df = pd.read_csv(self.data_files.pop()).sample(frac=1).reset_index(drop=True)
else:
yield x, y # last batch
break
yield x, y
def training(mode, network, restore, window_size=1000):
keras.backend.set_learning_phase(1) # training phase
model_file = os.path.join(mode.CKPT_DIR, str(network) + '.h5')
print('-- New training Session --', file=sys.stderr)
print(model_file, file=sys.stderr)
network.build()
if os.path.isfile(model_file) and restore:
print('Restoring previous session', file=sys.stderr)
network.model = keras.models.load_model(model_file)
else:
print('Training a new model', file=sys.stderr)
collector = dataCollector(mode, network.batch_size)
step = 0
windowed_loss = []
windowed_acc = []
for x, y in collector.batchGenerator():
step += 1
res = network.model.train_on_batch([x], [y])
windowed_loss.append(res[0])
if len(windowed_loss) > window_size:
windowed_loss.pop(0)
windowed_acc.append(res[1])
if len(windowed_acc) > window_size:
windowed_acc.pop(0)
if step % network.report == 0:
mean_loss = sum(windowed_loss) / len(windowed_loss)
mean_acc = sum(windowed_acc) / len(windowed_acc)
print('step {}, loss={:.4f}, acc={:.4f}, w_loss={:.4f}, w_acc={:.4f}'.format(step, res[0], res[1], mean_loss, mean_acc), file=sys.stderr)
print('Saving model to {}'.format(model_file), file=sys.stderr)
if not os.path.isdir(mode.CKPT_DIR):
os.makedirs(mode.CKPT_DIR)
network.model.save(model_file)
print('-- End of training Session --', file=sys.stderr)
def testing(mode, network, partial_drafts=True):
keras.backend.set_learning_phase(0) # testing phase
model_file = os.path.join(mode.CKPT_DIR, str(network) + '.h5')
print('-- New evaluating Session --', file=sys.stderr)
print(model_file, file=sys.stderr)
if not os.path.isfile(model_file):
print('Cannot find {}'.format(model_file), file=sys.stderr)
return
network.model = keras.models.load_model(model_file)
collector = dataCollector(mode, network.batch_size, partial_drafts)
step = 0
acc = []
for x, y in collector.batchGenerator():
step += 1
res = network.model.evaluate([x], [y], verbose=0)
acc.append(res[1])
if step % network.report == 0:
mean_acc = sum(acc) / len(acc)
print('step {}, acc={:.4f}, overall_acc={:.4f}'.format(step, res[1], mean_acc), file=sys.stderr)
print('-- End of evaluating Session --', file=sys.stderr)
def run(mode, network, restore):
assert isinstance(network, Networks.BaseModel), 'Unrecognized network {}'.format(network)
training(mode, network, restore)
testing(mode, network)
testing(mode, network, partial_drafts=False) # testing on finished drafts
if __name__ == '__main__':
m = Modes.ABR_TJMCS_Mode(['9.1','9.2','9.3','9.4','9.5','9.6','9.7'])
n = Networks.DenseUniform(mode=m, n_hidden_layers=5, NN=1024, dropout=0.2, batch_size=1000, report=1)
run(m, n, True)