forked from openvinotoolkit/openvino.genai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.cpp
408 lines (341 loc) · 17.8 KB
/
pipeline.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
// Copyright (C) 2023-2025 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#include <optional>
#include <random>
#include "openvino/genai/visual_language/pipeline.hpp"
#include "openvino/genai/visual_language/perf_metrics.hpp"
#include "openvino/genai/tokenizer.hpp"
#include "openvino/genai/text_streamer.hpp"
#include "visual_language/vlm_config.hpp"
#include "visual_language/inputs_embedder.hpp"
#include "visual_language/embedding_model.hpp"
#include "visual_language/pipeline_base.hpp"
#include "visual_language/continuous_batching_adapter.hpp"
#include "sampler.hpp"
#include "utils.hpp"
#include "lm_encoding.hpp"
using namespace ov::genai;
class VLMPipeline::VLMPipelineImpl : public VLMPipelineBase{
// A config to follow for text generation.
GenerationConfig m_generation_config;
// A tokenizer encoding a prompt.
Tokenizer m_tokenizer;
// A model to compute token embeddings.
// Input shape: [N, conversation length].
// Output shape: [1, conversation length, hidden_size].
EmbeddingsModel m_embedding;
// A language model used to generate a response.
// Input shapes: inputs_embeds[N, conversation length, hidden_size],
// position_ids[N, conversation length], beam_idx[N].
// Output shape: logits[N, conversation length, vocab_size].
ov::InferRequest m_language;
// True if chat mode is activated to save conversation
// history between generate() calls.
bool m_is_chat_conversation = false;
// InputsEmbedder
std::shared_ptr<InputsEmbedder> m_inputs_embedder;
// Axis num in kv cache from m_language model, which contains information about history len
size_t m_kv_cache_seq_length_axis = 2;
// Component for applying sampling to lm outputs
Sampler m_sampler;
size_t m_max_kv_cache_size = std::numeric_limits<size_t>::max();
bool m_is_npu = false;
public:
VLMPipelineImpl(
const std::filesystem::path& models_dir,
const std::string& device,
const ov::AnyMap& properties
) :
m_generation_config{
utils::from_config_json_if_exists<GenerationConfig>(
models_dir, "generation_config.json"
)
} {
m_is_npu = device.find("NPU") != std::string::npos;
auto properties_copy = properties;
auto language_model_path = models_dir / "openvino_language_model.xml";
auto language_model = utils::singleton_core().read_model(language_model_path, {}, properties_copy);
auto kv_pos = ov::genai::utils::get_kv_axes_pos(language_model);
m_kv_cache_seq_length_axis = kv_pos.seq_len;
// In case user provided properties per-device
// {
// ov::device::properties("NPU", ...),
// ov::device::properties("CPU", ...)
// }
auto device_propertes = utils::pop_or_default<ov::AnyMap>(
properties_copy, ov::device::properties.name(), { }
);
// Otherwise, the same properties are used for all models and devices
auto lm_properties = device_propertes.empty()
? properties_copy
: utils::pop_or_default<ov::AnyMap>(device_propertes, device, {});
ov::CompiledModel compiled_language_model;
auto embedder_device = device;
if (m_is_npu) {
embedder_device = "CPU";
utils::KVDesc kv_desc;
std::tie(compiled_language_model, kv_desc) = utils::compile_decoder_for_npu(
language_model, lm_properties, kv_pos, language_model_path
);
m_max_kv_cache_size = kv_desc.max_prompt_len + kv_desc.min_response_len;
} else {
compiled_language_model = utils::singleton_core().compile_model(language_model, device, lm_properties);
}
ov::genai::utils::print_compiled_model_properties(compiled_language_model, "VLM language model");
m_language = compiled_language_model.create_infer_request();
m_kv_cache_seq_length_axis = utils::get_kv_axes_pos(language_model).seq_len;
m_language.get_tensor("attention_mask").set_shape({1, 0});
auto embedder_properties = device_propertes.empty()
? properties_copy
: utils::pop_or_default<ov::AnyMap>(device_propertes, embedder_device, {});
m_inputs_embedder = std::make_shared<InputsEmbedder>(models_dir, embedder_device, embedder_properties);
m_tokenizer = m_inputs_embedder->get_tokenizer();
m_embedding = m_inputs_embedder->get_embedding_model();
// If eos_token_id was not provided, take value
if (m_generation_config.eos_token_id == -1) {
m_generation_config.set_eos_token_id(m_tokenizer.get_eos_token_id());
}
m_sampler.set_tokenizer(m_tokenizer);
m_sampler.set_seed(m_generation_config.rng_seed);
}
VLMPipelineImpl(
const ModelsMap& models_map,
const Tokenizer& tokenizer,
const std::filesystem::path& config_dir_path,
const std::string& device,
const ov::AnyMap& properties,
const GenerationConfig& generation_config
) :
m_generation_config{generation_config} {
m_is_npu = device.find("NPU") != std::string::npos;
OPENVINO_ASSERT(m_is_npu &&
"VLMPipeline initialization from string isn't supported for NPU device");
m_inputs_embedder = std::make_shared<InputsEmbedder>(models_map, tokenizer, config_dir_path, device, properties);
m_tokenizer = m_inputs_embedder->get_tokenizer();
m_embedding = m_inputs_embedder->get_embedding_model();
auto m_language_pair = utils::get_model_weights_pair(models_map, "language");
m_language = utils::singleton_core().compile_model(
m_language_pair.first, m_language_pair.second, device, properties
).create_infer_request();
m_language.get_tensor("attention_mask").set_shape({1, 0});
// If eos_token_id was not provided, take value
if (m_generation_config.eos_token_id == -1) {
m_generation_config.set_eos_token_id(m_tokenizer.get_eos_token_id());
}
m_sampler.set_tokenizer(m_tokenizer);
m_sampler.set_seed(m_generation_config.rng_seed);
}
VLMDecodedResults generate(
const std::string& prompt,
const std::vector<ov::Tensor>& rgbs,
GenerationConfig generation_config,
const StreamerVariant& streamer
) override {
auto generate_start_time = std::chrono::steady_clock::now();
VLMPerfMetrics perf_metrics;
auto& raw_counters = perf_metrics.raw_metrics;
auto& raw_vlm_counters = perf_metrics.vlm_raw_metrics;
if (!m_is_chat_conversation) {
m_language.reset_state();
m_language.get_tensor("attention_mask").set_shape({1, 0});
}
// If stop_token_ids were not provided, take value from default m_generation_config
if (generation_config.stop_token_ids.empty())
generation_config.stop_token_ids = m_generation_config.stop_token_ids;
// If eos_token_id was not provided, take value from default m_generation_config
if (generation_config.eos_token_id == -1)
generation_config.set_eos_token_id(m_generation_config.eos_token_id);
generation_config.validate();
if (m_is_npu) {
OPENVINO_ASSERT(rgbs.size() == 1u, "Currently only batch size equal to 1 is supported for NPU device!");
OPENVINO_ASSERT(generation_config.is_greedy_decoding() || generation_config.is_multinomial(),
"Currently only greedy and multinomial decoding are supported for NPU device!");
OPENVINO_ASSERT(generation_config.num_return_sequences == 1u,
"Currently only \"num_return_sequences\" equal to 1 is supported for NPU device!");
}
m_inputs_embedder->set_apply_chat_template_status(generation_config.apply_chat_template);
auto start_get_inputs_embeds = std::chrono::steady_clock::now();
ov::Tensor inputs_embeds = m_inputs_embedder->get_inputs_embeds(prompt, rgbs, perf_metrics);
auto end_get_inputs_embeds = std::chrono::steady_clock::now();
auto to_remove_from_hist = m_inputs_embedder->get_num_tokens_to_remove_from_hist();
utils::trim_kv_cache(m_language, to_remove_from_hist, m_kv_cache_seq_length_axis, std::nullopt);
std::vector<SequenceGroup::Ptr> requests;
size_t request_id = 0;
size_t block_size = 1; // not used
size_t history_size = m_language.get_tensor("attention_mask").get_shape().at(1) - to_remove_from_hist;
size_t inputs_embeds_size = inputs_embeds.get_shape().at(1);
KVCacheState& kv_cache_state = m_inputs_embedder->get_kv_cache_state();
std::vector<int64_t> tokenized_history = kv_cache_state.get_state();
ov::Tensor prompt_ids(ov::element::i64, { history_size + inputs_embeds_size });
OPENVINO_ASSERT(prompt_ids.get_size() >= tokenized_history.size(), "Prompt ids size is less than tokenized history size");
std::fill_n(prompt_ids.data<int64_t>(), prompt_ids.get_size(), m_tokenizer.get_pad_token_id());
std::copy(tokenized_history.begin(), tokenized_history.end(), prompt_ids.data<int64_t>());
SequenceGroup::Ptr sequence_group = std::make_shared<SequenceGroup>(request_id, prompt_ids, generation_config, block_size);
requests.push_back(sequence_group);
std::shared_ptr<StreamerBase> streamer_ptr = utils::create_streamer(streamer, m_tokenizer);
OPENVINO_ASSERT(streamer_ptr == nullptr || generation_config.num_return_sequences == 1 &&
(generation_config.is_greedy_decoding() || generation_config.is_multinomial()),
"Currently streaming is possible only with batch size=1 and only for greedy or multinomial decoding");
ov::Tensor new_atten_mask = ov::Tensor{ov::element::i64, { 1, history_size + inputs_embeds_size }};
std::fill_n(new_atten_mask.data<int64_t>(), new_atten_mask.get_size(), 1);
ov::Tensor position_ids;
std::optional<int64_t> rope_delta;
std::tie(position_ids, rope_delta) = m_inputs_embedder->get_position_ids(inputs_embeds_size, history_size);
if (m_sampler.get_seed() != generation_config.rng_seed) {
m_sampler.set_seed(generation_config.rng_seed);
}
ov::genai::utils::GenerationFinishInfo finish_info = ov::genai::get_lm_encoded_results(m_language, inputs_embeds, new_atten_mask, streamer_ptr, m_sampler, requests,
position_ids, kv_cache_state, m_embedding, rope_delta, m_max_kv_cache_size);
EncodedResults& encoded_result = finish_info.results;
auto decode_start_time = std::chrono::steady_clock::now();
VLMDecodedResults decoded;
for (size_t idx = 0; idx < encoded_result.tokens.size(); ++idx) {
decoded.texts.push_back(m_tokenizer.decode(encoded_result.tokens.at(idx)));
decoded.scores.push_back(encoded_result.scores.at(idx));
}
auto decode_end_time = std::chrono::steady_clock::now();
std::string decoded_results = decoded.texts.at(0);
if (m_is_chat_conversation)
m_inputs_embedder->update_chat_history(decoded_results);
else
kv_cache_state.reset_state();
auto generate_end_time = std::chrono::steady_clock::now();
decoded.perf_metrics = encoded_result.perf_metrics;
// Common perf metrics
auto& res_raw_counters = decoded.perf_metrics.raw_metrics;
decoded.perf_metrics.num_input_tokens = prompt_ids.get_size();
decoded.perf_metrics.load_time = this->get_load_time();
res_raw_counters.generate_durations.emplace_back(PerfMetrics::get_microsec(generate_end_time - generate_start_time));
res_raw_counters.detokenization_durations.emplace_back(PerfMetrics::get_microsec(decode_end_time - decode_start_time));
res_raw_counters.tokenization_durations.insert(res_raw_counters.tokenization_durations.end(), raw_counters.tokenization_durations.begin(), raw_counters.tokenization_durations.end());
// VLM specific perf metrics
decoded.perf_metrics.vlm_raw_metrics.prepare_embeddings_durations.emplace_back(PerfMetrics::get_microsec(end_get_inputs_embeds - start_get_inputs_embeds));
// Evaluate statistics
decoded.perf_metrics.m_evaluated = false;
decoded.perf_metrics.evaluate_statistics(generate_start_time);
return decoded;
}
void start_chat(const std::string& system_message) override {
OPENVINO_ASSERT(!m_is_npu && "start_chat() isn't supported in VLMPipeline for NPU device");
m_is_chat_conversation = true;
bool have_state = 0 != m_language.get_tensor("attention_mask").get_size();
if (have_state) {
// Resetting state may be slow.
m_language.reset_state();
// Since if is already introduced, move all resetting here.
m_language.get_tensor("attention_mask").set_shape({0, 0});
}
m_inputs_embedder->start_chat(system_message);
}
void finish_chat() override {
OPENVINO_ASSERT(!m_is_npu && "finish_chat() isn't supported in VLMPipeline for NPU device");
m_is_chat_conversation = false;
// Resetting state may be slow.
m_language.reset_state();
m_language.get_tensor("attention_mask").set_shape({0, 0});
// clear all chat history
m_inputs_embedder->finish_chat();
}
Tokenizer get_tokenizer() const override {
return m_tokenizer;
}
void set_chat_template(const std::string& new_template) override {
OPENVINO_ASSERT(!m_is_chat_conversation, "Chat template cannot be changed once start_chat() is called. Please, finish current chat via finish_chat()");
m_tokenizer.set_chat_template(new_template);
}
GenerationConfig get_generation_config() const override {
return m_generation_config;
}
void set_generation_config(const GenerationConfig& new_config) override {
int64_t default_eos_token_id = m_generation_config.eos_token_id;
auto default_stop_token_ids = m_generation_config.stop_token_ids;
m_generation_config = new_config;
// If stop_token_ids were not provided, take value from default config
if (m_generation_config.stop_token_ids.empty())
m_generation_config.stop_token_ids = default_stop_token_ids;
// if eos_token_id was not provided in config forward from default config
if (m_generation_config.eos_token_id == -1)
m_generation_config.set_eos_token_id(default_eos_token_id);
m_generation_config.validate();
}
};
VLMPipeline::VLMPipeline(
const std::filesystem::path& models_dir,
const std::string& device,
const ov::AnyMap& properties
) {
auto start_time = std::chrono::steady_clock::now();
if (properties.find(scheduler_config.name()) != properties.end() ||
properties.find(utils::DRAFT_MODEL_ARG_NAME) != properties.end() ||
properties.find(prompt_lookup.name()) != properties.end()) {
auto [plugin_config, scheduler_config] = utils::extract_scheduler_config(properties);
m_pimpl = std::make_unique<VLMContinuousBatchingAdapter>(models_dir, scheduler_config, device, plugin_config);
}
else {
m_pimpl = std::make_unique<VLMPipelineImpl>(models_dir, device, properties);
}
auto stop_time = std::chrono::steady_clock::now();
m_pimpl->set_load_time(std::chrono::duration_cast<std::chrono::milliseconds>(stop_time - start_time).count());
}
VLMPipeline::VLMPipeline(
const ModelsMap& models_map,
const Tokenizer& tokenizer,
const std::filesystem::path& config_dir_path,
const std::string& device,
const ov::AnyMap& properties,
const GenerationConfig& generation_config
) {
auto start_time = std::chrono::steady_clock::now();
if (properties.find(scheduler_config.name()) != properties.end() ||
properties.find(utils::DRAFT_MODEL_ARG_NAME) != properties.end() ||
properties.find(prompt_lookup.name()) != properties.end()) {
auto [plugin_config, scheduler_config] = utils::extract_scheduler_config(properties);
m_pimpl = std::make_unique<VLMContinuousBatchingAdapter>(models_map, tokenizer, config_dir_path, scheduler_config, device, plugin_config, generation_config);
}
else {
m_pimpl = std::make_unique<VLMPipelineImpl>(models_map, tokenizer, config_dir_path, device, properties, generation_config);
}
auto stop_time = std::chrono::steady_clock::now();
m_pimpl->set_load_time(std::chrono::duration_cast<std::chrono::milliseconds>(stop_time - start_time).count());
}
VLMPipeline::~VLMPipeline() = default;
VLMDecodedResults VLMPipeline::generate(
const std::string& prompt,
const std::vector<ov::Tensor>& rgbs,
const GenerationConfig& generation_config,
const StreamerVariant& streamer
) {
return m_pimpl->generate(prompt, rgbs, generation_config, streamer);
}
VLMDecodedResults VLMPipeline::generate(
const std::string& prompt,
const ov::Tensor& rgb,
const GenerationConfig& generation_config,
const StreamerVariant& streamer
) {
return m_pimpl->generate(prompt, {rgb}, generation_config, streamer);
}
VLMDecodedResults VLMPipeline::generate(
const std::string& prompt,
const ov::AnyMap& config_map
) {
return m_pimpl->generate(prompt, config_map);
}
void VLMPipeline::start_chat(const std::string& system_message) {
m_pimpl->start_chat(system_message);
}
void VLMPipeline::finish_chat() {
m_pimpl->finish_chat();
}
void VLMPipeline::set_chat_template(const std::string& new_template) {
m_pimpl->set_chat_template(new_template);
}
Tokenizer VLMPipeline::get_tokenizer() const {
return m_pimpl->get_tokenizer();
}
GenerationConfig VLMPipeline::get_generation_config() const {
return m_pimpl->get_generation_config();
}
void VLMPipeline::set_generation_config(const GenerationConfig& new_config) {
m_pimpl->set_generation_config(new_config);
}