-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_diff_neps.py
108 lines (85 loc) · 3.01 KB
/
run_diff_neps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
from pathlib import Path
import numpy as np
from utils.data import make_blobs_dataset
from utils.nnet import get_device
from hebbcl.logger import MetricLogger1Hidden
from hebbcl.model import Nnet
from hebbcl.trainer import Optimiser, train_on_blobs
from hebbcl.parameters import parser
from joblib import Parallel, delayed
args = parser.parse_args()
# overwrite cuda argument depending on GPU availability
args.cuda = args.cuda and torch.cuda.is_available()
def execute_run(i_run):
print("run {} / {}".format(str(i_run), str(args.n_runs)))
# create checkpoint dir
run_name = "run_" + str(i_run)
save_dir = Path("checkpoints") / args.save_dir / run_name
# get (cuda) device
args.device, _ = get_device(args.cuda)
# get dataset
dataset = make_blobs_dataset(args)
# instantiate logger, model and optimiser
logger = MetricLogger1Hidden(save_dir)
model = Nnet(args)
optim = Optimiser(args)
# send model to GPU
model = model.to(args.device)
# train model
train_on_blobs(args, model, optim, dataset, logger)
# save results
if args.save_results:
save_dir.mkdir(parents=True, exist_ok=True)
logger.save(model)
if __name__ == "__main__":
# # REVISION: OJA NETWORK BLOCKED ---------------------------------------------
# # overwrite standard parameters
# args.cuda = False
# args.n_episodes = 200
# args.ctx_scaling = 2
# args.lrate_sgd = 0.03775369549108046
# args.lrate_hebb = 0.00021666673995458582
# args.weight_init = 1e-2
# args.save_results = True
# args.perform_hebb = True
# args.gating = "oja"
# args.centering = True
# args.verbose = False
# args.ctx_avg = False
# args.ctx_avg_type = "ema"
# args.training_schedule = "blocked"
# args.n_runs = 50
# n_eps = np.arange(100, 510, 25)
# for ii, ep in enumerate(n_eps):
# if ep != 200:
# args.n_episodes = ep
# args.save_dir = f"blobs_revision_{ep}episodes_blocked_oja"
# Parallel(n_jobs=25, verbose=10)(
# delayed(execute_run)(i_run) for i_run in range(args.n_runs)
# )
# REVISION: VANILLA NETWORK BLOCKED ---------------------------------------------
# overwrite standard parameters
args.cuda = False
args.n_episodes = 200
args.ctx_scaling = 2
args.lrate_sgd = 0.03775369549108046
args.lrate_hebb = 0.00021666673995458582
args.weight_init = 1e-2
args.save_results = True
args.perform_hebb = False
args.gating = None
args.centering = False
args.verbose = False
args.ctx_avg = False
args.ctx_avg_type = "ema"
args.training_schedule = "blocked"
args.n_runs = 50
n_eps = np.arange(100, 510, 25)
for ii, ep in enumerate(n_eps):
if ep != 200:
args.n_episodes = ep
args.save_dir = f"blobs_revision_{ep}episodes_blocked_vanilla"
Parallel(n_jobs=25, verbose=10)(
delayed(execute_run)(i_run) for i_run in range(args.n_runs)
)