-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_utils.py
executable file
·259 lines (202 loc) · 7.5 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
"""Most utility functions here has been adopted from:
https://github.com/guillaumegenthial/sequence_tagging/blob/master/model/data_utils.py
"""
import numpy as np
import os
import math
# shared global variables to be imported from model also
UNK = "$UNK$"
NUM = "$NUM$"
NONE = "O"
# read the word importance scores
class AnnotationDataset(object):
def __init__(self, filename, processing_word=None):
self.filename = filename
self.processing_word = processing_word
self.length = None
def __iter__(self):
with open(self.filename) as f:
words, tags = [], []
for line in f:
line = line.strip()
if (len(line) == 0):
if len(words) != 0:
yield words, tags
words, tags = [], []
else:
ls = line.split(' ')
word, tag = ls[0], ls[-1]
if self.processing_word is not None:
word = self.processing_word(word)
words += [word]
tags += [tag]
def __len__(self):
if self.length is None:
self.length = 0
for _ in self:
self.length += 1
return self.length
def get_vocabs(datasets):
print("Building vocab...")
vocab_words = set()
vocab_tags = set()
for dataset in datasets:
for words, tags in dataset:
vocab_words.update(words)
vocab_tags.update(tags)
print("- done. {} tokens".format(len(vocab_words)))
return vocab_words, vocab_tags
def get_char_vocab(dataset):
vocab_char = set()
for words, _ in dataset:
for word in words:
vocab_char.update(word)
return vocab_char
def get_glove_vocab(filename):
print("Building vocab...")
vocab = set()
with open(filename) as f:
for line in f:
word = line.strip().split(' ')[0]
vocab.add(word)
print("- done. {} tokens".format(len(vocab)))
return vocab
def get_google_vocab(filename):
from gensim.models import Word2Vec
model = Word2Vec.load_word2vec_format(filename, binary=True)
print ("Building vocab...")
vocab = set(model.vocab.keys())
print ("- done. {} tokens".format(len(vocab)))
return model, vocab
def get_senna_vocab(filename):
print ("Building vocab...")
vocab = set()
with open(filename) as f:
for line in f:
word = line.strip()
vocab.add(word)
print ("- done. {} tokens".format(len(vocab)))
return vocab
def write_vocab(vocab, filename):
print("Writing vocab...")
with open(filename, "w") as f:
for i, word in enumerate(vocab):
if i != len(vocab) - 1:
f.write("{}\n".format(word))
else:
f.write(word)
print("- done. {} tokens".format(len(vocab)))
def load_vocab(filename):
try:
d = dict()
with open(filename) as f:
for idx, word in enumerate(f):
word = word.strip()
d[word] = idx
except IOError:
raise MyIOError(filename)
return d
def export_trimmed_glove_vectors(vocab, glove_filename, trimmed_filename, dim):
embeddings = np.zeros([len(vocab), dim])
with open(glove_filename) as f:
for line in f:
line = line.strip().split(' ')
word = line[0]
embedding = [float(x) for x in line[1:]]
if word in vocab:
word_idx = vocab[word]
embeddings[word_idx] = np.asarray(embedding)
np.savez_compressed(trimmed_filename, embeddings=embeddings)
def export_trimmed_google_vectors(vocab, google_model, trimmed_filename, dim, random):
embeddings = np.asarray(random.normal(loc=0.0, scale=0.1, size= [len(vocab), dim]), dtype=np.float32)
for word in google_model.vocab.keys():
if word in vocab:
word_idx = vocab[word]
embedding = google_model[word]
embeddings[word_idx] = np.asarray(embedding)
np.savez_compressed(trimmed_filename, embeddings=embeddings)
def export_trimmed_senna_vectors(vocab, vocab_emb, senna_filename, trimmed_filename, dim):
embeddings = np.zeros([len(vocab), dim])
vocab_emb = list(vocab_emb)
with open(senna_filename) as f:
for i, line in enumerate(f):
line = line.strip().split(' ')
word = vocab_emb[i]
embedding = map(float, line)
if word in vocab:
word_idx = vocab[word]
embeddings[word_idx] = np.asarray(embedding)
np.savez_compressed(trimmed_filename, embeddings=embeddings)
def get_trimmed_glove_vectors(filename):
try:
with np.load(filename) as data:
return data["embeddings"]
except IOError:
raise MyIOError(filename)
def get_trimmed_vectors(filename):
return get_trimmed_glove_vectors(filename)
def get_processing_word(vocab_words=None, vocab_chars=None,
lowercase=False, chars=False):
def f(word):
# 0. get chars of words
if vocab_chars is not None and chars == True:
char_ids = []
for char in word:
# ignore chars out of vocabulary
if char in vocab_chars:
char_ids += [vocab_chars[char]]
# 1. preprocess word
if lowercase:
word = word.lower()
if word.isdigit():
word = NUM
# 2. get id of word
if vocab_words is not None:
if word in vocab_words:
word = vocab_words[word]
else:
word = vocab_words[UNK]
# 3. return tuple char ids, word id
if vocab_chars is not None and chars == True:
return char_ids, word
else:
return word
return f
def _pad_sequences(sequences, pad_tok, max_length):
sequence_padded, sequence_length = [], []
for seq in sequences:
seq = list(seq)
seq_ = seq[:max_length] + [pad_tok]*max(max_length - len(seq), 0)
sequence_padded += [seq_]
sequence_length += [min(len(seq), max_length)]
return sequence_padded, sequence_length
def pad_sequences(sequences, pad_tok, nlevels=1):
if nlevels == 1:
max_length = max(map(lambda x : len(x), sequences))
sequence_padded, sequence_length = _pad_sequences(sequences,
pad_tok, max_length)
elif nlevels == 2:
max_length_word = max([max(map(lambda x: len(x), seq)) for seq in sequences])
sequence_padded, sequence_length = [], []
for seq in sequences:
# all words are same length now
sp, sl = _pad_sequences(seq, pad_tok, max_length_word)
sequence_padded += [sp]
sequence_length += [sl]
max_length_sentence = max(map(lambda x : len(x), sequences))
sequence_padded, _ = _pad_sequences(sequence_padded, [pad_tok]*max_length_word,
max_length_sentence)
sequence_length, _ = _pad_sequences(sequence_length, 0, max_length_sentence)
return sequence_padded, sequence_length
def minibatches(data, minibatch_size):
x_batch, y_batch = [], []
for (x, y) in data:
if len(x_batch) == minibatch_size:
yield x_batch, y_batch
x_batch, y_batch = [], []
if type(x[0]) == tuple:
x = zip(*x)
x_batch += [x]
y_batch += [y]
if len(x_batch) != 0:
yield x_batch, y_batch