-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
41 lines (34 loc) · 1.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
def train():
model_name = "t5-small"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
# Prepare dataset
dataset = TextDataset(
tokenizer=tokenizer,
file_path="data/input.txt",
block_size=128
)
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False,
)
training_args = TrainingArguments(
output_dir="./model/t5",
overwrite_output_dir=True,
num_train_epochs=1,
per_device_train_batch_size=1,
save_steps=10_000,
save_total_limit=2,
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=dataset,
)
trainer.train()
trainer.save_model("./model/t5")
if __name__ == "__main__":
train()