-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKD_train_crossattention.py
186 lines (148 loc) · 4.88 KB
/
KD_train_crossattention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import argparse
import random
from tqdm import tqdm
import torch
import numpy as np
import pandas as pd
from torch.utils.data.dataloader import DataLoader
from models.mini_multimodal_cross_attention import *
from merdataset import *
from mini_config import *
from utils import *
import time
args = None
def parse_args():
parser = argparse.ArgumentParser(description='get arguments')
parser.add_argument(
'--epochs',
default=train_config['epochs'],
type=int,
required=False,
help='epochs'
)
parser.add_argument(
'--batch',
default=train_config['batch_size'],
type=int,
required=False,
help='batch size'
)
parser.add_argument(
'--shuffle',
default=False,
required=False,
help='shuffle'
)
parser.add_argument(
'--lr',
default=train_config['lr'],
type=float,
required=False,
help='learning rate'
)
parser.add_argument(
'--cuda',
default='cuda:0',
help='class weight'
)
parser.add_argument(
'--save',
default=True,
action='store_true',
help='save checkpoint'
)
parser.add_argument(
'--model_name',
type=str,
default='test',
help='checkpoint name to load or save'
)
parser.add_argument(
'--text_only',
type=bool,
default=False,
help='train text encoder only'
)
parser.add_argument(
'--audio_only',
type=bool,
default=False,
help='train audio encoder only'
)
args = parser.parse_args()
return args
args = parse_args()
if args.cuda != 'cuda:0':
audio_config['cuda'] = args.cuda
text_config['cuda'] = args.cuda
cross_attention_config['cuda'] = args.cuda
train_config['cuda'] = args.cuda
def train(model,optimizer, dataloader):
print("Train start")
model.train()
#model.freeze()
# MSE loss를 사용해 교사모델의 증류된 지식을 학습
loss_func = torch.nn.MSELoss().to(train_config['cuda'])
tqdm_train = tqdm(total=len(dataloader), position=1)
accumulation_steps = train_config['accumulation_steps']
loss_list = []
for batch_id, batch in enumerate(dataloader):
batch_x, batch_y = batch[0], batch[1]
knowledge = torch.tensor([item['knoledge_distillation'][0] for item in batch_x])
outputs = model(batch_x)
# 학생모델이 예측한 값과, 교사모델이 예측한 값에 대한 loss 두가지 사용
loss1 = loss_func(outputs.to(torch.float32).to(train_config['cuda']), batch_y.to(torch.float32).to(train_config['cuda']))
loss2 = loss_func(outputs.to(torch.float32).to(train_config['cuda']), knowledge.to(torch.float32).to(train_config['cuda']))
total_loss = loss1 + loss2
loss_list.append(total_loss.item())
tqdm_train.set_description('loss is {:.2f}'.format(total_loss.item()))
tqdm_train.update()
total_loss = total_loss / accumulation_steps
total_loss.backward()
if batch_id % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
optimizer.zero_grad()
tqdm_train.close()
print("Train Loss: {:.5f}".format(sum(loss_list)/len(loss_list)))
def main():
audio_conf = pd.Series(audio_config)
text_conf = pd.Series(text_config)
cross_attention_conf = pd.Series(cross_attention_config)
print(audio_conf)
print(text_conf)
print(cross_attention_conf)
print(train_config)
audio_conf['path'] = './TOTAL/'
dataset = MERGEDataset(data_option='train', path='./data/')
dataset.prepare_text_data(text_conf)
seed = 1024
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# 학생모델
model = mini_MultiModalForCrossAttention(audio_conf,text_conf,cross_attention_conf, args.text_only, args.audio_only)
device = args.cuda
print('---------------------',device)
model = model.to(device)
optimizer = torch.optim.AdamW(params=model.parameters(), lr=args.lr)
if 'ckpt' not in os.listdir():
os.mkdir('ckpt')
print(model)
get_params(model)
if args.save:
print("checkpoint will be saved every 5epochs!")
for epoch in range(args.epochs):
dataloader = DataLoader(dataset, batch_size=args.batch, shuffle=args.shuffle,
collate_fn=lambda x: (x, torch.FloatTensor([i['label'] for i in x])))
train(model, optimizer, dataloader)
if (epoch+1) % 5 == 0:
if args.save:
torch.save(model,'./ckpt/{}_epoch{}.pt'.format(args.model_name,epoch))
if __name__ == '__main__':
start_time = time.time()
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "0"
main()
end_time = time.time()
print("Total Training time is : ", end_time-start_time)