forked from autowarefoundation/autoware_universe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyper_parameters.hpp
229 lines (204 loc) · 9.17 KB
/
hyper_parameters.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// Copyright 2024 Autoware Foundation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use node file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef NDT_SCAN_MATCHER__HYPER_PARAMETERS_HPP_
#define NDT_SCAN_MATCHER__HYPER_PARAMETERS_HPP_
#include <rclcpp/rclcpp.hpp>
#include <multigrid_pclomp/multigrid_ndt_omp.h>
#include <algorithm>
#include <string>
#include <vector>
enum class InitialPoseEstimationMethod {
RANDOM_SEARCH = 0,
GRID_SEARCH = 1,
};
enum class ConvergedParamType {
TRANSFORM_PROBABILITY = 0,
NEAREST_VOXEL_TRANSFORMATION_LIKELIHOOD = 1
};
struct HyperParameters
{
struct Frame
{
std::string base_frame;
std::string ndt_base_frame;
std::string map_frame;
} frame;
struct SensorPoints
{
double required_distance;
} sensor_points;
pclomp::NdtParams ndt;
bool ndt_regularization_enable;
struct InitialPoseEstimation
{
InitialPoseEstimationMethod method;
// Parameters for RANDOM_SEARCH
int64_t particles_num;
int64_t n_startup_trials;
// Parameters for GRID_SEARCH
int64_t grid_num_x;
int64_t grid_num_y;
int64_t grid_num_z;
int64_t grid_num_roll;
int64_t grid_num_pitch;
int64_t grid_num_yaw;
double grid_search_range_x;
double grid_search_range_y;
double grid_search_range_z;
double grid_search_range_roll;
double grid_search_range_pitch;
double grid_search_range_yaw;
} initial_pose_estimation;
struct Validation
{
double lidar_topic_timeout_sec;
double initial_pose_timeout_sec;
double initial_pose_distance_tolerance_m;
double critical_upper_bound_exe_time_ms;
} validation;
struct ScoreEstimation
{
ConvergedParamType converged_param_type;
double converged_param_transform_probability;
double converged_param_nearest_voxel_transformation_likelihood;
struct NoGroundPoints
{
bool enable;
double z_margin_for_ground_removal;
} no_ground_points;
} score_estimation;
struct Covariance
{
std::array<double, 36> output_pose_covariance;
struct CovarianceEstimation
{
bool enable;
std::vector<Eigen::Vector2d> initial_pose_offset_model;
} covariance_estimation;
} covariance;
struct DynamicMapLoading
{
double update_distance;
double map_radius;
double lidar_radius;
} dynamic_map_loading;
public:
explicit HyperParameters(rclcpp::Node * node)
{
frame.base_frame = node->declare_parameter<std::string>("frame.base_frame");
frame.ndt_base_frame = node->declare_parameter<std::string>("frame.ndt_base_frame");
frame.map_frame = node->declare_parameter<std::string>("frame.map_frame");
sensor_points.required_distance =
node->declare_parameter<double>("sensor_points.required_distance");
ndt.trans_epsilon = node->declare_parameter<double>("ndt.trans_epsilon");
ndt.step_size = node->declare_parameter<double>("ndt.step_size");
ndt.resolution = node->declare_parameter<double>("ndt.resolution");
ndt.max_iterations = static_cast<int>(node->declare_parameter<int64_t>("ndt.max_iterations"));
ndt.num_threads = static_cast<int>(node->declare_parameter<int64_t>("ndt.num_threads"));
ndt.num_threads = std::max(ndt.num_threads, 1);
ndt_regularization_enable = node->declare_parameter<bool>("ndt.regularization.enable");
ndt.regularization_scale_factor =
static_cast<float>(node->declare_parameter<float>("ndt.regularization.scale_factor"));
const int64_t initial_pose_estimation_method_tmp =
node->declare_parameter<int64_t>("initial_pose_estimation.method");
initial_pose_estimation.method =
static_cast<InitialPoseEstimationMethod>(initial_pose_estimation_method_tmp);
initial_pose_estimation.particles_num =
node->declare_parameter<int64_t>("initial_pose_estimation.particles_num");
initial_pose_estimation.n_startup_trials =
node->declare_parameter<int64_t>("initial_pose_estimation.n_startup_trials");
initial_pose_estimation.grid_num_x =
node->declare_parameter<int64_t>("initial_pose_estimation.grid_num_x");
initial_pose_estimation.grid_num_y =
node->declare_parameter<int64_t>("initial_pose_estimation.grid_num_y");
initial_pose_estimation.grid_num_z =
node->declare_parameter<int64_t>("initial_pose_estimation.grid_num_z");
initial_pose_estimation.grid_num_roll =
node->declare_parameter<int64_t>("initial_pose_estimation.grid_num_roll");
initial_pose_estimation.grid_num_pitch =
node->declare_parameter<int64_t>("initial_pose_estimation.grid_num_pitch");
initial_pose_estimation.grid_num_yaw =
node->declare_parameter<int64_t>("initial_pose_estimation.grid_num_yaw");
initial_pose_estimation.grid_search_range_x =
node->declare_parameter<double>("initial_pose_estimation.grid_search_range_x");
initial_pose_estimation.grid_search_range_y =
node->declare_parameter<double>("initial_pose_estimation.grid_search_range_y");
initial_pose_estimation.grid_search_range_z =
node->declare_parameter<double>("initial_pose_estimation.grid_search_range_z");
initial_pose_estimation.grid_search_range_roll =
node->declare_parameter<double>("initial_pose_estimation.grid_search_range_roll");
initial_pose_estimation.grid_search_range_pitch =
node->declare_parameter<double>("initial_pose_estimation.grid_search_range_pitch");
initial_pose_estimation.grid_search_range_yaw =
node->declare_parameter<double>("initial_pose_estimation.grid_search_range_yaw");
validation.lidar_topic_timeout_sec =
node->declare_parameter<double>("validation.lidar_topic_timeout_sec");
validation.initial_pose_timeout_sec =
node->declare_parameter<double>("validation.initial_pose_timeout_sec");
validation.initial_pose_distance_tolerance_m =
node->declare_parameter<double>("validation.initial_pose_distance_tolerance_m");
validation.critical_upper_bound_exe_time_ms =
node->declare_parameter<double>("validation.critical_upper_bound_exe_time_ms");
const int64_t converged_param_type_tmp =
node->declare_parameter<int64_t>("score_estimation.converged_param_type");
score_estimation.converged_param_type =
static_cast<ConvergedParamType>(converged_param_type_tmp);
score_estimation.converged_param_transform_probability =
node->declare_parameter<double>("score_estimation.converged_param_transform_probability");
score_estimation.converged_param_nearest_voxel_transformation_likelihood =
node->declare_parameter<double>(
"score_estimation.converged_param_nearest_voxel_transformation_likelihood");
score_estimation.no_ground_points.enable =
node->declare_parameter<bool>("score_estimation.no_ground_points.enable");
score_estimation.no_ground_points.z_margin_for_ground_removal = node->declare_parameter<double>(
"score_estimation.no_ground_points.z_margin_for_ground_removal");
std::vector<double> output_pose_covariance =
node->declare_parameter<std::vector<double>>("covariance.output_pose_covariance");
for (std::size_t i = 0; i < output_pose_covariance.size(); ++i) {
covariance.output_pose_covariance[i] = output_pose_covariance[i];
}
covariance.covariance_estimation.enable =
node->declare_parameter<bool>("covariance.covariance_estimation.enable");
if (covariance.covariance_estimation.enable) {
std::vector<double> initial_pose_offset_model_x =
node->declare_parameter<std::vector<double>>(
"covariance.covariance_estimation.initial_pose_offset_model_x");
std::vector<double> initial_pose_offset_model_y =
node->declare_parameter<std::vector<double>>(
"covariance.covariance_estimation.initial_pose_offset_model_y");
if (initial_pose_offset_model_x.size() == initial_pose_offset_model_y.size()) {
const size_t size = initial_pose_offset_model_x.size();
covariance.covariance_estimation.initial_pose_offset_model.resize(size);
for (size_t i = 0; i < size; i++) {
covariance.covariance_estimation.initial_pose_offset_model[i].x() =
initial_pose_offset_model_x[i];
covariance.covariance_estimation.initial_pose_offset_model[i].y() =
initial_pose_offset_model_y[i];
}
} else {
RCLCPP_WARN(
node->get_logger(),
"Invalid initial pose offset model parameters. Disable covariance estimation.");
covariance.covariance_estimation.enable = false;
}
}
dynamic_map_loading.update_distance =
node->declare_parameter<double>("dynamic_map_loading.update_distance");
dynamic_map_loading.map_radius =
node->declare_parameter<double>("dynamic_map_loading.map_radius");
dynamic_map_loading.lidar_radius =
node->declare_parameter<double>("dynamic_map_loading.lidar_radius");
}
};
#endif // NDT_SCAN_MATCHER__HYPER_PARAMETERS_HPP_