forked from autowarefoundation/autoware_universe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathndt_scan_matcher.param.yaml
144 lines (108 loc) · 4.57 KB
/
ndt_scan_matcher.param.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/**:
ros__parameters:
frame:
# Vehicle reference frame
base_frame: "base_link"
# NDT reference frame
ndt_base_frame: "ndt_base_link"
# Map frame
map_frame: "map"
sensor_points:
# Required distance of input sensor points. [m]
# If the max distance of input sensor points is lower than this value, the scan matching will not be performed.
required_distance: 10.0
ndt:
# The maximum difference between two consecutive
# transformations in order to consider convergence
trans_epsilon: 0.01
# The newton line search maximum step length
step_size: 0.1
# The ND voxel grid resolution
resolution: 2.0
# The number of iterations required to calculate alignment
max_iterations: 30
# Number of threads used for parallel computing
num_threads: 4
regularization:
enable: false
# Regularization scale factor
scale_factor: 0.01
initial_pose_estimation:
# method: 0=RANDOM_SEARCH(including TPE), 1=GRID_SEARCH
method: 1
#
# Parameters for RANDOM_SEARCH
#
# The number of particles to estimate initial pose
particles_num: 200
# The number of initial random trials in the TPE (Tree-Structured Parzen Estimator).
# This value should be equal to or less than 'initial_estimate_particles_num' and more than 0.
# If it is equal to 'initial_estimate_particles_num', the search will be the same as a full random search.
n_startup_trials: 20
#
# Parameters for GRID_SEARCH
#
# The number of grid search
grid_num_x: 3
grid_num_y: 3
grid_num_z: 1
grid_num_roll: 1
grid_num_pitch: 1
grid_num_yaw: 80
# The range of grid search
grid_search_range_x: 3.0 # [m] (Search range: -3.0m ~ 3.0m)
grid_search_range_y: 3.0 # [m] (Search range: -3.0m ~ 3.0m)
grid_search_range_z: 0.0 # [m]
grid_search_range_roll: 0.0 # [rad]
grid_search_range_pitch: 0.0 # [rad]
grid_search_range_yaw: 3.14159265359 # [rad] (Search range: -pi ~ pi)
validation:
# Tolerance of timestamp difference between current time and sensor pointcloud. [sec]
lidar_topic_timeout_sec: 1.0
# Tolerance of timestamp difference between initial_pose and sensor pointcloud. [sec]
initial_pose_timeout_sec: 1.0
# Tolerance of distance difference between two initial poses used for linear interpolation. [m]
initial_pose_distance_tolerance_m: 10.0
# The execution time which means probably NDT cannot matches scans properly. [ms]
critical_upper_bound_exe_time_ms: 100.0
score_estimation:
# Converged param type
# 0=TRANSFORM_PROBABILITY, 1=NEAREST_VOXEL_TRANSFORMATION_LIKELIHOOD
converged_param_type: 1
# If converged_param_type is 0
# Threshold for deciding whether to trust the estimation result
converged_param_transform_probability: 3.0
# If converged_param_type is 1
# Threshold for deciding whether to trust the estimation result
converged_param_nearest_voxel_transformation_likelihood: 2.3
# Scan matching score based on no ground LiDAR scan
no_ground_points:
enable: false
# If lidar_point.z - base_link.z <= this threshold , the point will be removed
z_margin_for_ground_removal: 0.8
covariance:
# The covariance of output pose
# Note that this covariance matrix is empirically derived
output_pose_covariance:
[
0.0225, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0225, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0225, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.000625, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.000625, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.000625,
]
# 2D Real-time covariance estimation with multiple searches (output_pose_covariance is the minimum value)
covariance_estimation:
enable: false
# Offset arrangement in covariance estimation [m]
# initial_pose_offset_model_x & initial_pose_offset_model_y must have the same number of elements.
initial_pose_offset_model_x: [0.0, 0.0, 0.5, -0.5, 1.0, -1.0]
initial_pose_offset_model_y: [0.5, -0.5, 0.0, 0.0, 0.0, 0.0]
dynamic_map_loading:
# Dynamic map loading distance
update_distance: 20.0
# Dynamic map loading loading radius
map_radius: 150.0
# Radius of input LiDAR range (used for diagnostics of dynamic map loading)
lidar_radius: 100.0