forked from autowarefoundation/autoware_universe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathndt_scan_matcher.param.yaml
120 lines (86 loc) · 3.88 KB
/
ndt_scan_matcher.param.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/**:
ros__parameters:
frame:
# Vehicle reference frame
base_frame: "base_link"
# NDT reference frame
ndt_base_frame: "ndt_base_link"
# Map frame
map_frame: "map"
sensor_points:
# Required distance of input sensor points. [m]
# If the max distance of input sensor points is lower than this value, the scan matching will not be performed.
required_distance: 10.0
ndt:
# The maximum difference between two consecutive
# transformations in order to consider convergence
trans_epsilon: 0.01
# The newton line search maximum step length
step_size: 0.1
# The ND voxel grid resolution
resolution: 2.0
# The number of iterations required to calculate alignment
max_iterations: 30
# Number of threads used for parallel computing
num_threads: 4
regularization:
enable: false
# Regularization scale factor
scale_factor: 0.01
initial_pose_estimation:
# The number of particles to estimate initial pose
particles_num: 200
# The number of initial random trials in the TPE (Tree-Structured Parzen Estimator).
# This value should be equal to or less than 'initial_estimate_particles_num' and more than 0.
# If it is equal to 'initial_estimate_particles_num', the search will be the same as a full random search.
n_startup_trials: 20
validation:
# Tolerance of timestamp difference between current time and sensor pointcloud. [sec]
lidar_topic_timeout_sec: 1.0
# Tolerance of timestamp difference between initial_pose and sensor pointcloud. [sec]
initial_pose_timeout_sec: 1.0
# Tolerance of distance difference between two initial poses used for linear interpolation. [m]
initial_pose_distance_tolerance_m: 10.0
# The execution time which means probably NDT cannot matches scans properly. [ms]
critical_upper_bound_exe_time_ms: 100.0
score_estimation:
# Converged param type
# 0=TRANSFORM_PROBABILITY, 1=NEAREST_VOXEL_TRANSFORMATION_LIKELIHOOD
converged_param_type: 1
# If converged_param_type is 0
# Threshold for deciding whether to trust the estimation result
converged_param_transform_probability: 3.0
# If converged_param_type is 1
# Threshold for deciding whether to trust the estimation result
converged_param_nearest_voxel_transformation_likelihood: 2.3
# Scan matching score based on no ground LiDAR scan
no_ground_points:
enable: false
# If lidar_point.z - base_link.z <= this threshold , the point will be removed
z_margin_for_ground_removal: 0.8
covariance:
# The covariance of output pose
# Note that this covariance matrix is empirically derived
output_pose_covariance:
[
0.0225, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0225, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0225, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.000625, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.000625, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.000625,
]
# 2D Real-time covariance estimation with multiple searches (output_pose_covariance is the minimum value)
covariance_estimation:
enable: false
# Offset arrangement in covariance estimation [m]
# initial_pose_offset_model_x & initial_pose_offset_model_y must have the same number of elements.
initial_pose_offset_model_x: [0.0, 0.0, 0.5, -0.5, 1.0, -1.0]
initial_pose_offset_model_y: [0.5, -0.5, 0.0, 0.0, 0.0, 0.0]
dynamic_map_loading:
# Dynamic map loading distance
update_distance: 20.0
# Dynamic map loading loading radius
map_radius: 150.0
# Radius of input LiDAR range (used for diagnostics of dynamic map loading)
lidar_radius: 100.0