-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexp.py
327 lines (304 loc) · 17.3 KB
/
exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
from models import RiemannianFeatures, Model, FermiDiracDecoder
from backbone import GNNClassifier
from utils import cal_accuracy, cal_F1, cal_AUC_AP
from data_factory import load_data, mask_edges
from logger import create_logger
from geoopt.optim import RiemannianAdam
import time
import os
class Exp:
def __init__(self, configs):
self.configs = configs
self.val_prop = 0.05
self.test_prop = 0.1
if self.configs.use_gpu and torch.cuda.is_available():
self.device = torch.device('cuda')
else:
self.device = torch.device('cpu')
def pretrain(self, model, Riemann_embeds_getter, epochs, logger, r_optim, optimizer):
pos_motifs, neg_motifs = mask_edges(self.motif, self.neg_motif, 0.05, 0.1)
pos_edges, neg_edges = mask_edges(self.edge_index, self.neg_edge, 0.05, 0.1)
neg_motif_train = neg_motifs[0][:, np.random.randint(0, neg_motifs[0].shape[1], pos_motifs[0].shape[1])]
for epoch in range(1, epochs + 1):
model.train()
Riemann_embeds_getter.train()
embeds, loss = model(self.features, pos_edges[0], pos_motifs[0], neg_motif_train, Riemann_embeds_getter)
r_optim.zero_grad()
optimizer.zero_grad()
loss.backward()
r_optim.step()
optimizer.step()
logger.info(f"Epoch {epoch}: train_loss={loss.item()}")
torch.save(model.state_dict(), 'pretrain.pt')
def train(self):
logger = create_logger(self.configs.log_path)
device = self.device
features, in_features, labels, edge_index, neg_edge, motif, neg_motif, masks, n_classes = load_data(self.configs.root_path, self.configs.dataset)
edge_index = edge_index.to(device)
neg_edge = neg_edge.to(device)
motif = motif.to(device)
neg_motif = neg_motif.to(device)
features = features.to(device)
labels = labels.to(device)
self.masks = masks
self.in_features = in_features
self.n_classes = n_classes
self.labels = labels
self.edge_index = edge_index
self.neg_edge = neg_edge
self.motif = motif
self.neg_motif = neg_motif
self.features = features
if self.configs.downstream_task == "NC":
vals = []
accs = []
wf1s = []
mf1s = []
elif self.configs.downstream_task == "LP":
aucs = []
aps = []
for exp_iter in range(self.configs.exp_iters):
logger.info(f"\ntrain iters {exp_iter}")
Riemann_embeds_getter = RiemannianFeatures(features.shape[0], self.configs.dimensions,
self.configs.init_curvature, self.configs.num_factors,
learnable=self.configs.learnable).to(device)
model = Model(backbone=self.configs.backbone, n_layers=self.configs.n_layers, in_features=in_features,
embed_features=self.configs.embed_features, hidden_features=self.configs.hidden_features,
n_heads=self.configs.n_heads, drop_edge=self.configs.drop_edge, drop_node=self.configs.drop_edge,
num_factors=self.configs.num_factors, dimensions=self.configs.dimensions, d_embeds=self.configs.d_embeds,
temperature=self.configs.temperature, device=device).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=self.configs.lr, weight_decay=self.configs.w_decay)
r_optim = RiemannianAdam(Riemann_embeds_getter.parameters(), lr=self.configs.lr_Riemann, weight_decay=self.configs.w_decay, stabilize=100)
logger.info("--------------------------Training Start-------------------------")
if self.configs.pre_training:
self.pretrain(model, Riemann_embeds_getter, self.configs.epochs, logger, r_optim, optimizer)
if os.path.exists('pretrain.pt') and self.configs.pre_training:
print("Loading Pretrained model")
model.load_state_dict(torch.load('pretrain.pt'))
if self.configs.downstream_task == 'NC':
_, _, _ = self.train_lp(model, Riemann_embeds_getter, r_optim, optimizer, logger)
best_val, test_acc, test_weighted_f1, test_macro_f1 = self.train_cls(model, Riemann_embeds_getter, r_optim, optimizer, logger)
logger.info(
f"val_accuracy={best_val.item() * 100: .2f}%, test_accuracy={test_acc.item() * 100: .2f}%")
logger.info(
f"\t\t weighted_f1={test_weighted_f1 * 100: .2f}%, macro_f1={test_macro_f1 * 100: .2f}%")
vals.append(best_val.item())
accs.append(test_acc.item())
wf1s.append(test_weighted_f1)
mf1s.append(test_macro_f1)
elif self.configs.downstream_task == 'LP':
_, test_auc, test_ap = self.train_lp(model, Riemann_embeds_getter, r_optim, optimizer, logger)
logger.info(
f"test_auc={test_auc * 100: .2f}%, test_ap={test_ap * 100: .2f}%")
aucs.append(test_auc)
aps.append(test_ap)
elif self.configs.downstream_task == 'Motif':
_, test_auc, test_ap = self.train_motif(model, Riemann_embeds_getter, r_optim, optimizer, logger)
logger.info(
f"test_auc={test_auc * 100: .2f}%, test_ap={test_ap * 100: .2f}%")
aucs.append(test_auc)
aps.append(test_ap)
else:
raise NotImplementedError
if self.configs.downstream_task == "NC":
logger.info(f"valid results: {np.mean(vals)}~{np.std(vals)}")
logger.info(f"best test ACC: {np.max(accs)}")
logger.info(f"test results: {np.mean(accs)}~{np.std(accs)}")
logger.info(f"test weighted-f1: {np.mean(wf1s)}~{np.std(wf1s)}")
logger.info(f"test macro-f1: {np.mean(mf1s)}~{np.std(mf1s)}")
elif self.configs.downstream_task == "LP" or self.configs.downstream_task == 'Motif':
logger.info(f"test AUC: {np.mean(aucs)}~{np.std(aucs)}")
logger.info(f"test AP: {np.mean(aps)}~{np.std(aps)}")
def cal_cls_loss(self, model, edge_index, mask, features, labels):
out = model(features, edge_index)
loss = F.cross_entropy(out[mask], labels[mask])
acc = cal_accuracy(out[mask], labels[mask])
weighted_f1, macro_f1 = cal_F1(out[mask].detach().cpu(), labels[mask].detach().cpu())
return loss, acc, weighted_f1, macro_f1
def train_cls(self, model, Riemann_embeds_getter, r_optim, optimizer, logger):
"""masks = (train, val, test)"""
device = self.device
d = (self.configs.num_factors+1)*self.configs.embed_features
model_cls = GNNClassifier(backbone=self.configs.backbone, n_layers=2, in_features=self.in_features+d,
hidden_features=self.configs.hidden_features_cls, out_features=self.n_classes,
n_heads=self.configs.n_heads, drop_edge=self.configs.drop_edge_cls,
drop_node=self.configs.drop_cls).to(device)
optimizer_cls = torch.optim.Adam(model_cls.parameters(), lr=self.configs.lr_cls, weight_decay=self.configs.w_decay_cls)
optimizer = torch.optim.Adam(model.parameters(), lr=self.configs.lr, weight_decay=self.configs.w_decay)
r_optim = RiemannianAdam(Riemann_embeds_getter.parameters(), lr=self.configs.lr_Riemann, weight_decay=self.configs.w_decay, stabilize=100)
best_acc = 0.
early_stop_count = 0
time_before_train = time.time()
all_times = []
for epoch in range(1, self.configs.epochs_cls + 1):
now_time = time.time()
model_cls.train()
model.train()
Riemann_embeds_getter.train()
features, _ = model(self.features, self.edge_index, self.motif, self.neg_motif, Riemann_embeds_getter)
features = torch.concat([self.features, features.detach()], -1)
loss, acc, weighted_f1, macro_f1 = self.cal_cls_loss(model_cls, self.edge_index, self.masks[0], features, self.labels)
optimizer_cls.zero_grad()
optimizer.zero_grad()
r_optim.zero_grad()
loss.backward()
optimizer_cls.step()
optimizer.step()
r_optim.step()
logger.info(f"Epoch {epoch}: train_loss={loss.item()}, train_accuracy={acc}, time={time.time()-now_time}")
all_times.append(time.time() - now_time)
if epoch % self.configs.eval_freq == 0:
model_cls.eval()
val_loss, acc, weighted_f1, macro_f1 = self.cal_cls_loss(model_cls, self.edge_index, self.masks[1], features, self.labels)
logger.info(f"Epoch {epoch}: val_loss={val_loss.item()}, val_accuracy={acc}")
if acc > best_acc:
early_stop_count = 0
best_acc = acc
else:
early_stop_count += 1
if early_stop_count >= self.configs.patience_cls:
break
avg_train_time = np.mean(all_times)
time_str = f"Average Time: {avg_train_time} s/epoch"
logger.info(time_str)
time_str = f"{self.configs.downstream_task}_{self.configs.dataset}_{time_str}\n"
with open('time.txt', 'a') as f:
f.write(time_str)
f.close()
test_loss, test_acc, test_weighted_f1, test_macro_f1 = self.cal_cls_loss(model_cls, self.edge_index, self.masks[2], features, self.labels)
return best_acc, test_acc, test_weighted_f1, test_macro_f1
def cal_lp_loss(self, embeddings, decoder, pos_edges, neg_edges):
pos_scores = decoder(torch.sum((embeddings[pos_edges[0]] - embeddings[pos_edges[1]])**2, -1))
neg_scores = decoder(torch.sum((embeddings[neg_edges[0]] - embeddings[neg_edges[1]])**2, -1))
loss = F.binary_cross_entropy(pos_scores.clip(0.01, 0.99), torch.ones_like(pos_scores)) + \
F.binary_cross_entropy(neg_scores.clip(0.01, 0.99), torch.zeros_like(neg_scores))
label = [1] * pos_scores.shape[0] + [0] * neg_scores.shape[0]
preds = list(pos_scores.detach().cpu().numpy()) + list(neg_scores.detach().cpu().numpy())
auc, ap = cal_AUC_AP(preds, label)
return loss, auc, ap
def train_lp(self, model, Riemann_embeds_getter, r_optim, optimizer, logger):
val_prop = 0.05
test_prop = 0.1
pos_edges, neg_edges = mask_edges(self.edge_index, self.neg_edge, val_prop, test_prop)
pos_motifs, neg_motifs = mask_edges(self.motif, self.neg_motif, val_prop, test_prop)
decoder = FermiDiracDecoder(self.configs.r, self.configs.t).to(self.device)
best_ap = 0
early_stop_count = 0
for g in r_optim.param_groups:
g['lr'] = self.configs.lr_lp
time_before_train = time.time()
for epoch in range(1, self.configs.epochs_lp + 1):
t = time.time()
model.train()
Riemann_embeds_getter.train()
r_optim.zero_grad()
optimizer.zero_grad()
neg_motif_train = neg_motifs[0][:, np.random.randint(0, neg_motifs[0].shape[1], pos_motifs[0].shape[1])]
embeddings, _ = model(self.features, pos_edges[0], pos_motifs[0], neg_motif_train, Riemann_embeds_getter)
neg_edge_train = neg_edges[0][:, np.random.randint(0, neg_edges[0].shape[1], pos_edges[0].shape[1])]
loss, auc, ap = self.cal_lp_loss(embeddings, decoder, pos_edges[0], neg_edge_train)
loss.backward()
r_optim.step()
optimizer.step()
logger.info(f"Epoch {epoch}: train_loss={loss.item()}, train_AUC={auc}, train_AP={ap}, time={time.time() - t}")
if epoch % self.configs.eval_freq == 0:
model.eval()
Riemann_embeds_getter.eval()
val_loss, auc, ap = self.cal_lp_loss(embeddings, decoder, pos_edges[1], neg_edges[1])
logger.info(f"Epoch {epoch}: val_loss={val_loss.item()}, val_AUC={auc}, val_AP={ap}")
if ap > best_ap:
early_stop_count = 0
best_ap = ap
embeds = embeddings.detach().cpu().numpy()
np.save(self.configs.save_embeds, embeds)
else:
early_stop_count += 1
if early_stop_count >= self.configs.patience_lp:
break
avg_train_time = (time.time() - time_before_train) / epoch
time_str = f"Average Time: {avg_train_time} s/epoch"
logger.info(time_str)
time_str = f"{self.configs.downstream_task}_{self.configs.dataset}_{time_str}\n"
with open('time.txt', 'a') as f:
f.write(time_str)
f.close()
test_loss, test_auc, test_ap = self.cal_lp_loss(embeddings, decoder, pos_edges[2], neg_edges[2])
return test_loss, test_auc, test_ap
def cal_motif_loss(self, embeddings, decoder, pos_motifs, neg_motifs):
from sklearn.metrics import roc_auc_score, average_precision_score
pos_scores1 = decoder(torch.sum((embeddings[pos_motifs[0]] - embeddings[pos_motifs[1]])**2, -1))
pos_scores2 = decoder(torch.sum((embeddings[pos_motifs[2]] - embeddings[pos_motifs[1]])**2, -1))
pos_scores3 = decoder(torch.sum((embeddings[pos_motifs[2]] - embeddings[pos_motifs[0]])**2, -1))
neg_scores1 = decoder(torch.sum((embeddings[neg_motifs[0]] - embeddings[neg_motifs[1]])**2, -1))
neg_scores2 = decoder(torch.sum((embeddings[neg_motifs[2]] - embeddings[neg_motifs[1]])**2, -1))
neg_scores3 = decoder(torch.sum((embeddings[neg_motifs[2]] - embeddings[neg_motifs[0]])**2, -1))
pos1 = pos_scores1 * pos_scores2 * (1 - pos_scores3)
pos2 = pos_scores1 * pos_scores2 * pos_scores3
pos0 = 1 - pos1 - pos2
pos = torch.stack([pos0, pos1, pos2], dim=1)
p_y = pos_motifs[-1].detach() + 1
neg1 = neg_scores1 * neg_scores2 * (1 - neg_scores3)
neg2 = neg_scores1 * neg_scores2 * neg_scores3
neg0 = 1 - neg1 - neg2
neg = torch.stack([neg0, neg1, neg2], dim=1)
n_y = torch.zeros_like(p_y)
probs = torch.concat([pos, neg], dim=0)
label = torch.concat([p_y, n_y])
loss = F.nll_loss(torch.log(probs + 1e-5), label)
preds = probs.detach().cpu().numpy()
label = label.detach().cpu().numpy()
auc = roc_auc_score(label, preds, multi_class='ovo')
aps = []
for i in range(3):
y = (label == i).astype(int)
aps.append(average_precision_score(y, preds[:, i], average='macro'))
ap = np.mean(aps)
return loss, auc, ap
def train_motif(self, model, Riemann_embeds_getter, r_optim, optimizer, logger):
val_prop = 0.05
test_prop = 0.1
pos_motifs, neg_motifs = mask_edges(self.motif, self.neg_motif, val_prop, test_prop)
pos_edges, neg_edges = mask_edges(self.edge_index, self.neg_edge, val_prop, test_prop)
decoder = FermiDiracDecoder(self.configs.r, self.configs.t).to(self.device)
best_ap = 0
early_stop_count = 0
for g in r_optim.param_groups:
g['lr'] = self.configs.lr_lp
time_before_train = time.time()
for epoch in range(1, self.configs.epochs_lp + 1):
model.train()
Riemann_embeds_getter.train()
r_optim.zero_grad()
optimizer.zero_grad()
neg_motif_train = neg_motifs[0][:, np.random.randint(0, neg_motifs[0].shape[1], pos_motifs[0].shape[1])]
embeddings, _ = model(self.features, pos_edges[0], pos_motifs[0], neg_motif_train, Riemann_embeds_getter)
loss, auc, ap = self.cal_motif_loss(embeddings, decoder, pos_motifs[0], neg_motif_train)
loss.backward()
r_optim.step()
optimizer.step()
logger.info(f"Epoch {epoch}: train_loss={loss.item()}, train_AUC={auc}, train_AP={ap}")
if epoch % self.configs.eval_freq == 0:
model.eval()
Riemann_embeds_getter.eval()
val_loss, auc, ap = self.cal_motif_loss(embeddings, decoder, pos_motifs[1], neg_motifs[1])
logger.info(f"Epoch {epoch}: val_loss={val_loss.item()}, val_AUC={auc}, val_AP={ap}")
if ap > best_ap:
early_stop_count = 0
best_ap = ap
else:
early_stop_count += 1
if early_stop_count >= self.configs.patience_lp:
break
avg_train_time = (time.time() - time_before_train) / epoch
time_str = f"Average Time: {avg_train_time} s/epoch"
logger.info(time_str)
time_str = f"{self.configs.downstream_task}_{self.configs.dataset}_{time_str}\n"
with open('time.txt', 'a') as f:
f.write(time_str)
f.close()
test_loss, test_auc, test_ap = self.cal_motif_loss(embeddings, decoder, pos_motifs[2], neg_motifs[2])
return test_loss, test_auc, test_ap