-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata_factory.py
245 lines (211 loc) · 9.42 KB
/
data_factory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import random
import torch
import networkx as nx
import numpy as np
import torch_geometric.data
from torch_geometric.data import InMemoryDataset
from torch_geometric.datasets import Planetoid, WikipediaNetwork, Actor, GemsecDeezer, WikiCS, FacebookPagePage
from torch_geometric.utils import to_networkx
from torch_geometric.utils import negative_sampling
# from ogb.nodeproppred import PygNodePropPredDataset
from sklearn.datasets import load_wine, load_breast_cancer, load_digits, fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.preprocessing import scale
from sklearn.model_selection import train_test_split
import scipy.sparse as sp
import pickle as pkl
import os
import warnings
warnings.filterwarnings('ignore')
def get_mask(idx, length):
"""Create mask.
"""
mask = torch.zeros(length, dtype=torch.bool)
mask[idx] = 1
return mask
def load_data(root: str, data_name: str, split='public', **kwargs):
if data_name in ['Cora', 'Citeseer', 'Pubmed']:
dataset = Planetoid(root=root, name=data_name, split=split)
train_mask, val_mask, test_mask = dataset.data.train_mask, dataset.data.val_mask, dataset.data.test_mask
elif data_name == 'ogbn-arxiv':
dataset = PygNodePropPredDataset(name=data_name)
mask = dataset.get_idx_split()
train_mask, val_mask, test_mask = mask.values()
elif data_name in ['actor', 'chameleon', 'squirrel']:
if data_name == 'actor':
path = root + f'/{data_name}'
dataset = Actor(root=path)
else:
dataset = WikipediaNetwork(root=root, name=data_name)
num_nodes = dataset.data.x.shape[0]
idx_train = []
for j in range(dataset.num_classes):
idx_train.extend([i for i, x in enumerate(dataset.data.y) if x == j][:20])
idx_val = np.arange(num_nodes - 1500, num_nodes - 1000)
idx_test = np.arange(num_nodes - 1000, num_nodes)
label_len = dataset.data.y.shape[0]
train_mask, val_mask, test_mask = get_mask(idx_train, label_len), get_mask(idx_val, label_len), get_mask(idx_test, label_len)
elif data_name == "airport":
dataset = Airport(root)
train_mask, val_mask, test_mask = dataset.data.mask
elif data_name == "amazon":
dataset = Amazon(root)
train_mask, val_mask, test_mask = dataset.data.mask
elif data_name == "wikics":
dataset = WikiCS(root=f"{root}/wikics")
train_mask, val_mask, test_mask = dataset.data.train_mask, dataset.data.val_mask, dataset.data.test_mask
elif data_name == "facebook":
dataset = FacebookPagePage(root=f"{root}/facebook")
n = len(dataset.data.x)
index = torch.arange(n)
train_mask = index[: int(n*0.7)]
val_mask = index[int(n*0.7): int(n * 0.8)]
test_mask = index[int(n*0.8):]
# elif data_name in ["deezer_hu", "deezer_hr", "deezer_ro"]:
# if data_name == "deezer_hu":
# dataset = GemsecDeezer(root, "HU")
# elif data_name == "deezer_hr":
# dataset = GemsecDeezer(root, "HR")
# elif data_name == "deezer_ro":
# dataset = GemsecDeezer(root, "RO")
# train_mask, val_mask, test_mask = dataset.data.mask
else:
raise NotImplementedError
print(dataset.data)
mask = (train_mask, val_mask, test_mask)
features = dataset.data.x
num_features = dataset.num_features
labels = dataset.data.y
edge_index = dataset.data.edge_index.long()
neg_edges = negative_sampling(edge_index)
motif = get_motif(edge_index)
neg_motif = negative_sampling(motif[:2])
neg_motif = torch.concat([neg_motif, motif[2:]], dim=0)
num_classes = dataset.num_classes
return features, num_features, labels, edge_index, neg_edges, motif, neg_motif, mask, num_classes
def mask_edges(edge_index, neg_edges, val_prop, test_prop):
n = len(edge_index[0])
n_val = int(val_prop * n)
n_test = int(test_prop * n)
edge_val, edge_test, edge_train = edge_index[:, :n_val], edge_index[:, n_val:n_val + n_test], edge_index[:, n_val + n_test:]
val_edges_neg, test_edges_neg = neg_edges[:, :n_val], neg_edges[:, n_val:n_test + n_val]
train_edges_neg = torch.concat([neg_edges, val_edges_neg, test_edges_neg], dim=-1)
return (edge_train, edge_val, edge_test), (train_edges_neg, val_edges_neg, test_edges_neg)
def get_motif(edge_index: torch.Tensor):
from collections import defaultdict
locate = defaultdict(list)
for edge in edge_index.t():
u, v = edge[0].item(), edge[1].item()
locate[u].append(v)
index = []
for edge in edge_index.t():
u, v = edge[0].item(), edge[1].item()
for w in locate[v]:
if w != u:
if w in locate[u] or u in locate[w]:
index.append([u, v, w, 1])
else:
index.append([u, v, w, 0])
index = torch.tensor(index).t()
return index
def bin_feat(feat, bins):
digitized = np.digitize(feat, bins)
return digitized - digitized.min()
def augment(adj, features, normalize_feats=True):
deg = np.squeeze(np.sum(adj, axis=0).astype(int))
deg[deg > 5] = 5
deg_onehot = torch.tensor(np.eye(6)[deg], dtype=torch.float).squeeze()
const_f = torch.ones(features.shape[0], 1)
features = torch.cat((features, deg_onehot, const_f), dim=1)
return features
def split_data(labels, val_prop, test_prop, seed):
np.random.seed(seed)
nb_nodes = labels.shape[0]
all_idx = np.arange(nb_nodes)
pos_idx = labels.nonzero()[0]
neg_idx = (1. - labels).nonzero()[0]
np.random.shuffle(pos_idx)
np.random.shuffle(neg_idx)
pos_idx = pos_idx.tolist()
neg_idx = neg_idx.tolist()
nb_pos_neg = min(len(pos_idx), len(neg_idx))
nb_val = round(val_prop * nb_pos_neg)
nb_test = round(test_prop * nb_pos_neg)
idx_val_pos, idx_test_pos, idx_train_pos = pos_idx[:nb_val], pos_idx[nb_val:nb_val + nb_test], pos_idx[
nb_val + nb_test:]
idx_val_neg, idx_test_neg, idx_train_neg = neg_idx[:nb_val], neg_idx[nb_val:nb_val + nb_test], neg_idx[
nb_val + nb_test:]
return idx_val_pos + idx_val_neg, idx_test_pos + idx_test_neg, idx_train_pos + idx_train_neg
class Airport(InMemoryDataset):
def __init__(self, root):
super(Airport, self).__init__()
val_prop, test_prop = 0.15, 0.15
graph = pkl.load(open(f"{root}/airport/airport.p", 'rb'))
adj = nx.adjacency_matrix(graph).toarray()
row, col = np.nonzero(adj)
edge_index = np.concatenate([row[None], col[None]], axis=0)
features = np.array([graph._node[u]['feat'] for u in graph.nodes()])
features = augment(adj, torch.tensor(features).float())
label_idx = 4
labels = features[:, label_idx]
features = features[:, :label_idx]
labels = bin_feat(labels, bins=[7.0 / 7, 8.0 / 7, 9.0 / 7])
idx_val, idx_test, idx_train = split_data(labels, val_prop, test_prop, random.seed(3047))
mask = (idx_train, idx_val, idx_test)
self.data = torch_geometric.data.Data(x=features,
edge_index=torch.tensor(edge_index),
y=torch.tensor(labels),
mask=mask)
@property
def num_features(self) -> int:
return self.data.x.shape[-1]
@property
def raw_file_names(self):
pass
@property
def processed_file_names(self):
pass
def download(self):
pass
def process(self):
pass
class Amazon(InMemoryDataset):
def __init__(self, root):
super(Amazon, self).__init__()
names1 = ['adj_matrix.npz', 'attr_matrix.npz']
names2 = ['label_matrix.npy', 'train_mask.npy', 'val_mask.npy', 'test_mask.npy']
objects = []
for tmp_name in names1:
tmp_path = f"{root}/amazon/amazon.{tmp_name}"
objects.append(sp.load_npz(tmp_path))
for tmp_name in names2:
tmp_path = f"{root}/amazon/amazon.{tmp_name}"
objects.append(np.load(tmp_path))
adj, features, label_matrix, train_mask, val_mask, test_mask = tuple(objects)
row, col = np.nonzero(adj)
edge_index = np.concatenate([row[None], col[None]], axis=0)
features = torch.tensor(features.toarray()).float()
labels = np.argmax(label_matrix, 1)
arr = np.arange(len(train_mask))
idx_train = torch.tensor(arr[train_mask]).long()
idx_val = torch.tensor(arr[val_mask]).long()
idx_test = torch.tensor(arr[test_mask]).long()
mask = (idx_train, idx_val, idx_test)
self.data = torch_geometric.data.Data(x=features,
edge_index=torch.tensor(edge_index),
y=torch.tensor(labels),
mask=mask)
@property
def num_features(self) -> int:
return self.data.x.shape[-1]
@property
def raw_file_names(self):
pass
@property
def processed_file_names(self):
pass
def download(self):
pass
def process(self):
pass