-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_adapt.py
270 lines (222 loc) · 6.85 KB
/
test_adapt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from dataclasses import dataclass
from typing import Iterable
import numpy as np
import onnx
import onnx.parser
import onnxruntime as ort
import pytest
import spox.opset.ai.onnx.v18 as op18
import spox.opset.ai.onnx.v19 as op19
from spox import Tensor, Var, argument, build, inline
from spox._attributes import AttrInt64s
from spox._fields import BaseAttributes, BaseInputs, BaseOutputs
from spox._graph import arguments, results
from spox._node import OpType
from spox._standard import StandardNode
@pytest.fixture
def old_squeeze() -> onnx.ModelProto:
return onnx.parser.parse_model(
"""
<
ir_version: 8,
opset_import: ["" : 12]
>
agraph (float[1, N] A) => (float[N] B)
{
B = Squeeze<axes = [0]>(A)
}
"""
)
@pytest.fixture
def old_identity() -> onnx.ModelProto:
return onnx.parser.parse_model(
"""
<
ir_version: 8,
opset_import: ["" : 13]
>
agraph (float[N] A) => (float[N] B)
{
B = Identity(A)
}
"""
)
@pytest.fixture
def inline_old_squeeze_graph(old_squeeze):
(data,) = arguments(
data=Tensor(
np.float32,
(
1,
None,
),
)
)
(result,) = inline(old_squeeze)(A=data).values()
return results(final=result).with_opset(("ai.onnx", 17))
@pytest.fixture
def inline_old_identity_twice_graph(old_identity):
(x,) = arguments(data=Tensor(np.float32, (None,)))
(y,) = inline(old_identity)(A=x).values()
(z,) = inline(old_identity)(A=y).values()
return results(final=z).with_opset(("ai.onnx", 17))
class Squeeze11(StandardNode):
@dataclass
class Attributes(BaseAttributes):
axes: AttrInt64s
@dataclass
class Inputs(BaseInputs):
data: Var
@dataclass
class Outputs(BaseOutputs):
squeezed: Var
op_type = OpType("Squeeze", "", 11)
attrs: Attributes
inputs: Inputs
outputs: Outputs
def squeeze11(_data: Var, _axes: Iterable[int]):
return Squeeze11(
Squeeze11.Attributes(AttrInt64s(_axes, "axes")), Squeeze11.Inputs(_data)
).outputs.squeezed
@pytest.fixture
def old_squeeze_graph(old_squeeze):
(data,) = arguments(
data=Tensor(
np.float32,
(
1,
None,
),
)
)
result = squeeze11(data, [0])
return results(final=result).with_opset(("ai.onnx", 17))
def test_adapts_inline_old_squeeze(onnx_helper, inline_old_squeeze_graph):
onnx_helper.assert_close(
onnx_helper.run(
inline_old_squeeze_graph,
"final",
data=np.array([[1, 2, 3, 4]], dtype=np.float32),
),
[1, 2, 3, 4],
)
def test_adapts_inline_old_identity_twice(onnx_helper, inline_old_identity_twice_graph):
onnx_helper.assert_close(
onnx_helper.run(
inline_old_identity_twice_graph,
"final",
data=np.array([1, 2, 3, 4], dtype=np.float32),
),
[1, 2, 3, 4],
)
def test_adapts_singleton_old_squeeze(onnx_helper, old_squeeze_graph):
onnx_helper.assert_close(
onnx_helper.run(
old_squeeze_graph,
"final",
data=np.array([[1, 2, 3, 4]], dtype=np.float32),
),
[1, 2, 3, 4],
)
def test_adapt_node_with_repeating_input_names():
a = argument(Tensor(np.float32, ("N",)))
b = op18.equal(a, a)
c = op19.identity(a)
build({"a": a}, {"b": b, "c": c})
def test_inline_model_custom_node_only():
"""Inline a model which only consists of a custom node.
Such models do not import from the default domain.
"""
domain = "foo.ai"
node = onnx.helper.make_node("FooOp", ["a"], ["b"], domain=domain)
value_infos_input = [
onnx.helper.make_value_info(
"a", onnx.helper.make_tensor_type_proto(onnx.TensorProto.STRING, ("N",))
),
]
value_infos_output = [
onnx.helper.make_value_info(
"b", onnx.helper.make_tensor_type_proto(onnx.TensorProto.STRING, ("N",))
)
]
model = onnx.helper.make_model(
onnx.helper.make_graph(
[node],
"graph",
value_infos_input,
value_infos_output,
),
opset_imports=[onnx.helper.make_opsetid(domain, 1)],
)
# Ensure that our model is valid
onnx.checker.check_model(model, full_check=True)
(a,) = arguments(data=Tensor(np.str_, ("N",)))
(b,) = inline(model)(a).values()
# Add another node to the model to trigger the adaption logic
c = op18.identity(b)
build({"a": a}, {"c": c})
@pytest.mark.skip(
reason="Adapting custom nodes (including their subgraphs) is currently not supported"
)
def test_inline_model_custom_node_nested(old_squeeze: onnx.ModelProto):
"""A singleton custom node with a old standard node in its attribute."""
domain = "foo.ai"
node = onnx.helper.make_node(
"FooOp", ["a"], ["b"], domain=domain, **{"nested_graph": old_squeeze.graph}
)
value_infos_input = [
onnx.helper.make_value_info(
"a", onnx.helper.make_tensor_type_proto(onnx.TensorProto.FLOAT, ("N",))
),
]
value_infos_output = [
onnx.helper.make_value_info(
"b", onnx.helper.make_tensor_type_proto(onnx.TensorProto.FLOAT, ("N",))
)
]
model = onnx.helper.make_model(
onnx.helper.make_graph(
[node],
"graph",
value_infos_input,
value_infos_output,
),
opset_imports=[
onnx.helper.make_opsetid(domain, 1),
onnx.helper.make_opsetid("", 12),
],
)
# Ensure that our model is valid
onnx.checker.check_model(model, full_check=True)
(a,) = arguments(data=Tensor(np.float32, ("N",)))
(b,) = inline(model)(a).values()
# Add another node to the model to trigger the adaption logic
c = op18.identity(b)
build({"a": a}, {"c": c})
def test_if_adapatation_squeeze():
cond = argument(Tensor(np.bool_, ()))
b = argument(Tensor(np.float32, (1,)))
squeezed = squeeze11(b, [0])
out = op18.if_(
cond,
then_branch=lambda: [squeezed],
else_branch=lambda: [squeeze11(b, [0])],
)
model = build({"b": b, "cond": cond}, {"out": out[0]})
# predict on model
b = np.array([1.1], dtype=np.float32)
cond = np.array(True, dtype=np.bool_)
out = ort.InferenceSession(model.SerializeToString()).run(
None, {"b": b, "cond": cond}
)
def test_if_adaptation_const():
sq = op19.const(1.1453, dtype=np.float32)
b = argument(Tensor(np.float32, ("N",)))
cond = op18.equal(sq, b)
out = op18.if_(cond, then_branch=lambda: [sq], else_branch=lambda: [sq])
model = build({"b": b}, {"out": out[0]})
assert model.domain == "" or model.domain == "ai.onnx"
assert (
model.opset_import[0].domain == "ai.onnx" or model.opset_import[0].domain == ""
)
assert model.opset_import[0].version > 11