- Comply with
scikit-learn
versions 1.6 and higher.
- Add support for using
scipy.sparse.csr_matrix
as datastructure for covariatesX
.
- Add abstract method [
MetaLearner.predict_conditional_average_outcomes
][metalearners.metalearner.MetaLearner.predict_conditional_average_outcomes] to [metalearners.metalearner.MetaLearner
][metalearners.metalearner.MetaLearner]. - Implement [
RLearner.predict_conditional_average_outcomes
][metalearners.rlearner.RLearner.predict_conditional_average_outcomes] for [metalearners.rlearner.RLearner
][metalearners.rlearner.RLearner].
- Fix bug in which the [
metalearners.slearner.SLearner
][metalearners.slearner.SLearner]'s inference step would have some leakage in the in-sample scenario.
- Add [
MetaLearner.init_args
][metalearners.metalearner.MetaLearner.init_args]. - Add [
FixedBinaryPropensity
][metalearners.utils.FixedBinaryPropensity]. - Add
MetaLearner._build_onnx
to [metalearners.MetaLearner
][metalearners.metalearner.MetaLearner] abstract class and implement it for [TLearner
][metalearners.tlearner.TLearner], [XLearner
][metalearners.xlearner.XLearner], [RLearner
][metalearners.rlearner.RLearner], and [DRLearner
][metalearners.drlearner.DRLearner]. - Add
MetaLearner._necessary_onnx_models
. - Add [
DRLearner.average_treatment_effect
][metalearners.drlearner.DRLearner.average_treatment_effect] to compute the AIPW point estimate and standard error for average treatment effects (ATE) without requiring a full model fit.
- Add [
MetaLearner.fit_all_nuisance
][metalearners.metalearner.MetaLearner.fit_all_nuisance] and [MetaLearner.fit_all_treatment
][metalearners.metalearner.MetaLearner.fit_all_treatment]. - Add optional
store_raw_results
andstore_results
parameters to [MetaLearnerGridSearch
][metalearners.grid_search.MetaLearnerGridSearch]. - Renamed
_GSResult
to [GSResult
][metalearners.grid_search.GSResult]. - Added
grid_size_
attribute to [MetaLearnerGridSearch
][metalearners.grid_search.MetaLearnerGridSearch]. - Implement [
CrossFitEstimator.score
][metalearners.cross_fit_estimator.CrossFitEstimator.score].
- Fixed a bug in [
MetaLearner.evaluate
][metalearners.metalearner.MetaLearner.evaluate] where it failed in the case offeature_set
being different fromNone
.
- Add optional
adaptive_clipping
parameter to [DRLearner
][metalearners.drlearner.DRLearner].
- Change the index columns order in
MetaLearnerGridSearch.results_
. - Raise a custom error if only one class is present in a classification outcome.
- Raise a custom error if there are some treatment variants which have seen classification outcomes that have not appeared for some other treatment variant.
- Implement [
MetaLearnerGridSearch
][metalearners.grid_search.MetaLearnerGridSearch]. - Add a
scoring
parameter to [MetaLearner.evaluate
][metalearners.metalearner.MetaLearner.evaluate] and implement the abstract method for [XLearner
][metalearners.xlearner.XLearner] and [DRLearner
][metalearners.drlearner.DRLearner].
- Increase the lower bound on
scikit-learn
from 1.3 to 1.4. - Drop the run dependency on
git_root
.
- No longer raise an error if
feature_set
is provided to [SLearner
][metalearners.slearner.SLearner]. - Fix a bug where base model dictionaries -- e.g.,
n_folds
orfeature-set
-- were improperly initialized if the provided dictionary's keys were a strict superset of the expected keys.
- Ship license file.
- Fix dependencies for pip.
- Implemented [
CrossFitEstimator.clone
][metalearners.cross_fit_estimator.CrossFitEstimator.clone]. - Added
n_jobs_base_learners
to [MetaLearner.fit
][metalearners.metalearner.MetaLearner.fit]. - Renamed [
Explainer.feature_importances
][metalearners.explainer.Explainer.feature_importances]. Note this is a breaking change. - Renamed [
MetaLearner.feature_importances
][metalearners.metalearner.MetaLearner.feature_importances]. Note this is a breaking change. - Renamed [
Explainer.shap_values
][metalearners.explainer.Explainer.shap_values]. Note this is a breaking change. - Renamed [
MetaLearner.shap_values
][metalearners.metalearner.MetaLearner.shap_values]. Note this is a breaking change. - Renamed [
MetaLearner.explainer
][metalearners.metalearner.MetaLearner.explainer]. Note this is a breaking change. - Implemented
synchronize_cross_fitting
parameter for [MetaLearner.fit
][metalearners.metalearner.MetaLearner.fit]. - Implemented
cv
parameter for [CrossFitEstimator.fit
][metalearners.cross_fit_estimator.CrossFitEstimator.fit].
- Implemented [
Explainer
][metalearners.explainer.Explainer] with support for binary classification and regression outcomes and discrete treatment variants. - Integration of [
Explainer
][metalearners.explainer.Explainer] with [MetaLearner
][metalearners.metalearner.MetaLearner] for feature importance and SHAP values calculations. - Implemented model reuse through the
fitted_nuisance_models
andfitted_propensity_model
parameters of [MetaLearner
][metalearners.metalearner.MetaLearner]. - Allow for
fit_params
in [MetaLearner.fit
][metalearners.metalearner.MetaLearner.fit].
Beta release with:
- [
DRLearner
][metalearners.drlearner.DRLearner] with support for binary classification and regression outcomes and discrete treatment variants. - Generalization of [
TLearner
][metalearners.tlearner.TLearner], [XLearner
][metalearners.xlearner.XLearner], and [RLearner
][metalearners.rlearner.RLearner] to allow for more than two discrete treatment variants. - Unification of shapes returned by
predict
methods. - [
simplify_output
][metalearners.utils.simplify_output] and [metalearner_factory
][metalearners.utils.metalearner_factory].
Alpha release with:
- [
TLearner
][metalearners.tlearner.TLearner] with support for binary classification and regression outcomes and binary treatment variants. - [
SLearner
][metalearners.slearner.SLearner] with support for binary classification and regression outcomes and discrete treatment variants. - [
XLearner
][metalearners.xlearner.XLearner] with support for binary classification and regression outcomes and binary treatment variants. - [
RLearner
][metalearners.rlearner.RLearner] with support for binary classification and regression outcomes and binary treatment variants.