forked from epfl-dlab/Quotebank
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
246 lines (224 loc) · 8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
import glob
import logging
import os
import torch
from transformers import WEIGHTS_NAME, AutoTokenizer
from quobert.model import fit, evaluate, BertForQuotationAttribution
from quobert.utils import set_seed
from quobert.utils.data import ConcatParquetDataset, ParquetDataset
QUOTE_TOKEN = "[QUOTE]"
QUOTE_TARGET = "[TARGET_QUOTE]"
logger = logging.getLogger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pre-trained model or shortcut name selected in the list: ['bert-base-cased']",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints and predictions will be written.",
)
parser.add_argument(
"--train_dir",
default=None,
type=str,
help="The input training directory. Should contain (.gz.parquet) files",
)
parser.add_argument(
"--val_dir",
default=None,
type=str,
help="The input validation directory. Should contain (.gz.parquet) files",
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded",
)
parser.add_argument(
"--per_gpu_train_batch_size",
default=24,
type=int,
help="Batch size per GPU/CPU for training.",
)
parser.add_argument(
"--per_gpu_eval_batch_size",
default=128,
type=int,
help="Batch size per GPU/CPU for evaluation.",
)
parser.add_argument(
"--learning_rate",
default=1e-7,
type=float,
help="The initial learning rate for Adam.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer."
)
parser.add_argument(
"--max_grad_norm", default=1.0, type=float, help="Max gradient norm."
)
parser.add_argument(
"--num_train_epochs",
default=3,
type=int,
help="Total number of training epochs to perform.",
)
parser.add_argument(
"--warmup_steps",
default=5000,
type=int,
help="Linear warmup over warmup_steps.",
)
parser.add_argument(
"--logging_steps", type=int, default=500, help="Log every X updates steps."
)
parser.add_argument(
"--save_steps",
type=int,
default=10500,
help="Save checkpoint every X updates steps.",
)
parser.add_argument(
"--overwrite_output_dir",
action="store_true",
help="Overwrite the content of the output directory",
)
parser.add_argument(
"--do_train", action="store_true", help="If you want to train the model",
)
parser.add_argument(
"--do_eval",
action="store_true",
help="If you want to evaluate a model on the validation set (model in --output_dir)",
)
parser.add_argument(
"--eval_all_checkpoints",
action="store_true",
help="If you want to evaluate all checkpoints on the validation set (`do_eval` should be set)",
)
parser.add_argument(
"--seed", type=int, default=42, help="random seed for initialization"
)
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument(
"--tb_path",
type=str,
default=None,
help="Tensorboard logging dir if you want to overwrite `runs`.",
)
args = parser.parse_args()
args.azure = False
if args.fp16:
try:
import apex # type: ignore
apex.amp.register_half_function(torch, "einsum")
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
)
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
set_seed(args.seed)
if args.do_train:
# Load the dataset and train
logger.info(f"Started loading the dataset from {args.train_dir}")
if args.train_dir.endswith(".pt"):
logger.info(f"Loading .pt file")
train_dataset = torch.load(args.train_dir)
else:
files = glob.glob(os.path.join(args.train_dir, "**.gz.parquet"))
train_dataset = ConcatParquetDataset([ParquetDataset(f) for f in files])
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None,
)
tokenizer.add_tokens([QUOTE_TOKEN, QUOTE_TARGET])
model = BertForQuotationAttribution.from_pretrained(
args.model_name_or_path,
cache_dir=args.cache_dir if args.cache_dir else None,
)
model.resize_token_embeddings(len(tokenizer))
model.to(args.device)
logger.info("Start the training function")
fit(args, train_dataset, model)
# Save the trained model and the tokenizer
# Create output directory if needed
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
if args.do_eval:
logger.info("Loading checkpoints saved during training for evaluation")
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c)
for c in sorted(
glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)
)
)
logger.info("Evaluate the following checkpoints: %s", checkpoints)
logger.info(f"Started loading the validation dataset from {args.val_dir}")
files = glob.glob(os.path.join(args.val_dir, "**.gz.parquet"))
validation_dataset = ConcatParquetDataset([ParquetDataset(f) for f in files])
for checkpoint in checkpoints:
# Reload the model
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
model = BertForQuotationAttribution.from_pretrained(checkpoint)
model.to(args.device)
# Evaluate
evaluate(args, model, validation_dataset, no_save=True)