-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_factor.py
240 lines (194 loc) · 9.95 KB
/
train_factor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import tensorflow as tf
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import numpy as np
from model_factor import FVS_CNN
from data_generator import DataGenerator, CITIES
from datetime import datetime
from tqdm import trange
from tensorboard_logging import Logger
import metrics
# Parameters
# ==================================================
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_string("data_dir", "data",
"""Path to data folder""")
tf.flags.DEFINE_string("dataset", "user",
"""Name of dataset (business or user)""")
tf.flags.DEFINE_string("factor_layer", "conv1",
"""Name of layer to place the factors [conv1, conv3, conv5, fc7] (default: fc7)""")
tf.flags.DEFINE_integer("num_factors", 16,
"""Number of specific neurons for user/item (default: 16)""")
tf.flags.DEFINE_integer("num_checkpoints", 1,
"""Number of checkpoints to store (default: 1)""")
tf.flags.DEFINE_integer("num_epochs", 50,
"""Number of training epochs (default: 50)""")
tf.flags.DEFINE_integer("num_threads", 8,
"""Number of threads for data processing (default: 2)""")
tf.flags.DEFINE_integer("display_step", 1000,
"""Display after number of steps (default: 1000)""")
tf.flags.DEFINE_float("learning_rate", 0.001,
"""Learning rate (default: 0.001)""")
tf.flags.DEFINE_float("lambda_reg", 0.0005,
"""Regularization lambda factor (default: 0.0005)""")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5,
"""Probability of keeping neurons (default: 0.5)""")
tf.flags.DEFINE_boolean("allow_soft_placement", True,
"""Allow device soft device placement""")
skip_layers = [FLAGS.factor_layer]
train_layers = ['{}_factor'.format(FLAGS.factor_layer)]
finetune_layers = [l for l in ['fc8', 'fc7', 'fc6', 'conv5', 'conv4', 'conv3', 'conv2', 'conv1']
if not l.startswith(FLAGS.factor_layer)] + ['{}_shared'.format(FLAGS.factor_layer)]
writer_dir = "logs/f_{}".format(FLAGS.dataset)
checkpoint_dir = "checkpoints/f_{}".format(FLAGS.dataset)
weight_dir = "weights/{}".format(FLAGS.dataset)
if tf.gfile.Exists(weight_dir):
tf.gfile.DeleteRecursively(weight_dir)
tf.gfile.MakeDirs(weight_dir)
if tf.gfile.Exists(checkpoint_dir):
tf.gfile.DeleteRecursively(checkpoint_dir)
tf.gfile.MakeDirs(checkpoint_dir)
def learning_rate_with_decay(initial_learning_rate, batches_per_epoch, boundary_epochs, decay_rates):
# Reduce the learning rate at certain epochs.
boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
vals = [initial_learning_rate * decay for decay in decay_rates]
def learning_rate_fn(global_step):
global_step = tf.cast(global_step, tf.int32)
return tf.train.piecewise_constant(global_step, boundaries, vals)
return learning_rate_fn
def loss_fn(model):
with tf.name_scope("loss"):
cross_entropy = tf.losses.softmax_cross_entropy(onehot_labels=model.y, logits=model.fc8)
l2_regularization = 0.5 * tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'weights' in v.name])
loss = tf.reduce_mean(cross_entropy + FLAGS.lambda_reg * l2_regularization)
return loss
def train_fn(loss, generator):
var_list1 = [v for v in tf.trainable_variables() if v.name.split('/')[0] in finetune_layers]
var_list2 = [v for v in tf.trainable_variables() if v.name.split('/')[0] in train_layers]
print('Fine-tuned layers:', finetune_layers)
print('Trained layers:', train_layers)
grads1 = tf.gradients(loss, var_list1)
grads2 = tf.gradients(loss, var_list2)
global_step = tf.Variable(0, trainable=False)
learning_rate = learning_rate_with_decay(initial_learning_rate=FLAGS.learning_rate,
batches_per_epoch=generator.train_batches_per_epoch,
boundary_epochs=[20, 40], decay_rates=[1, 0.1, 0.01])(global_step)
opt1 = tf.train.MomentumOptimizer(learning_rate, momentum=0.5)
opt2 = tf.train.MomentumOptimizer(10 * learning_rate, momentum=0.5)
train_op1 = opt1.apply_gradients(zip(grads1, var_list1), name='finetune_op')
train_op2 = opt2.apply_gradients(zip(grads2, var_list2), global_step, name='train_op')
train_op = tf.group(train_op1, train_op2)
return train_op2, train_op, learning_rate
def train(sess, model, generator, train_op, learning_rate, loss, epoch, logger):
generator.load_train_set(sess)
sum_loss = 0.
count = 0
loop = trange(generator.train_batches_per_epoch, desc='Training')
for step in loop:
img, label, factor = generator.get_next(sess)
model.load_factor_weights(sess, factor)
_, _loss = sess.run([train_op, loss], feed_dict={model.x: img, model.y: label})
sum_loss += _loss
count += 1
model.update_factor_weights(sess, factor)
if step > 0 and step % FLAGS.display_step == 0:
avg_loss = sum_loss / count
loop.set_postfix(loss=avg_loss)
_step = epoch * generator.train_batches_per_epoch + step
logger.log_scalar('loss', avg_loss, _step)
logger.log_scalar('learning_rate', sess.run(learning_rate), _step)
count = 0
sum_loss = 0.
def test(sess, model, generator, result_file):
pointwise_results = []
pairwise_results = []
mae_results = []
for city in CITIES:
generator.load_test_set(sess, city)
pds = []
gts = []
factors = []
for _ in trange(generator.test_batches_per_epoch[city], desc=city):
batch_img, batch_label, batch_factor = generator.get_next(sess)
model.load_factor_weights(sess, batch_factor)
pd = sess.run(model.prob, feed_dict={model.x: batch_img})
pds.extend(pd.tolist())
gts.extend(batch_label.tolist())
factors.extend(batch_factor.tolist())
pds = np.asarray(pds)
gts = np.asarray(gts)
pointwise_results.append(metrics.pointwise(pds, gts))
pairwise_results.append(metrics.pairwise(pds, gts, factors))
mae_results.append(metrics.mae(pds, gts))
layout = '{:15} {:>10} {:>10} {:>10} {:>10}'
print(layout.format('City', 'Size', 'Pointwise', 'Pairwise', 'MAE'))
result_file.write(layout.format('City', 'Size', 'Pointwise', 'Pairwise', 'MAE\n'))
print('-' * 59)
result_file.write('-' * 59 + '\n')
test_sizes = []
for city, pointwise, pairwise, mae in zip(CITIES, pointwise_results, pairwise_results, mae_results):
print(layout.format(
city, generator.test_sizes[city], '{:.3f}'.format(pointwise), '{:.3f}'.format(pairwise), '{:.3f}'.format(mae)))
result_file.write(layout.format(
city, generator.test_sizes[city], '{:.3f}'.format(pointwise), '{:.3f}'.format(pairwise), '{:.3f}\n'.format(mae)))
test_sizes.append(generator.test_sizes[city])
test_sizes = np.asarray(test_sizes, dtype=np.int)
total = np.sum(test_sizes)
avg_pointwise = np.sum(np.asarray(pointwise_results) * test_sizes) / total
avg_pairwise = np.sum(np.asarray(pairwise_results) * test_sizes) / total
avg_mae = np.sum(np.asarray(mae_results) * test_sizes) / total
print('-' * 59)
result_file.write('-' * 59 + '\n')
print(layout.format(
'Avg.', total, '{:.3f}'.format(avg_pointwise), '{:.3f}'.format(avg_pairwise), '{:.3f}'.format(avg_mae)))
result_file.write(layout.format(
'Avg.', total, '{:.3f}'.format(avg_pointwise), '{:.3f}'.format(avg_pairwise), '{:.3f}\n'.format(avg_mae)))
result_file.flush()
def save_model(sess, model, saver, epoch, factor_id_map):
print("{} Saving checkpoint of model...".format(datetime.now()))
checkpoint_name = os.path.join(checkpoint_dir,
'model_epoch' + str(epoch + 1) + '.ckpt')
save_path = saver.save(sess, checkpoint_name)
print("{} Model checkpoint saved at {}".format(datetime.now(), save_path))
print("{} Saving factor weights...".format(datetime.now()))
for factor_id in model.factor_weight_dict.keys():
factor = factor_id_map[factor_id]
factor_weight_path = os.path.join(weight_dir, factor)
if not tf.gfile.Exists(factor_weight_path):
tf.gfile.MakeDirs(factor_weight_path)
np.save(os.path.join(factor_weight_path, 'weights.npy'), model.factor_weight_dict[factor])
np.save(os.path.join(factor_weight_path, 'biases.npy'), model.factor_bias_dict[factor])
print("{} Factor weights saved at {}".format(datetime.now(), weight_dir))
def main(_):
generator = DataGenerator(data_dir=FLAGS.data_dir,
dataset=FLAGS.dataset,
batch_size=1,
num_threads=FLAGS.num_threads)
model = FVS_CNN(num_classes=2, num_factors=FLAGS.num_factors, factor_id_map=generator.factor_id_map,
factor_layer=FLAGS.factor_layer, skip_layers=skip_layers,
weights_path='weights/{}_base.npy'.format(FLAGS.dataset))
loss = loss_fn(model)
warm_up, train_op, learning_rate = train_fn(loss, generator)
saver = tf.train.Saver(max_to_keep=1)
# Start Tensorflow session
config = tf.ConfigProto(allow_soft_placement=FLAGS.allow_soft_placement)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
logger = Logger(writer_dir, sess.graph)
result_file = open('result_{}_{}.txt'.format(FLAGS.dataset, FLAGS.factor_layer), 'w')
sess.run(tf.global_variables_initializer())
model.load_initial_weights(sess)
print("{} Start training...".format(datetime.now()))
print("{} Open Tensorboard at --logdir {}".format(datetime.now(), writer_dir))
for epoch in range(FLAGS.num_epochs):
print("\n{} Epoch: {}/{}".format(datetime.now(), epoch + 1, FLAGS.num_epochs))
result_file.write("\n{} Epoch: {}/{}\n".format(datetime.now(), epoch + 1, FLAGS.num_epochs))
if epoch < 20:
train(sess, model, generator, warm_up, learning_rate, loss, epoch, logger)
else:
train(sess, model, generator, train_op, learning_rate, loss, epoch, logger)
test(sess, model, generator, result_file)
# save_model(sess, model, saver, epoch, generator.factor_id_map)
result_file.close()
if __name__ == '__main__':
tf.app.run()