-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathsemseg-spunet34c-0-base.py
137 lines (129 loc) · 5.38 KB
/
semseg-spunet34c-0-base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# spconv is too fast, data loading speed is bottleneck. Cache data is a better choice.
_base_ = ['../_base_/default_runtime.py',
'../_base_/tests/segmentation.py']
# misc custom setting
batch_size = 12 # bs: total bs in all gpus
mix_prob = 0.8
empty_cache = False
enable_amp = True
# model settings
model = dict(
type="SpUNetBase",
in_channels=6,
out_channels=13,
channels=(32, 64, 128, 256, 256, 128, 64, 64),
layers=(2, 3, 4, 6, 2, 2, 2, 2)
)
# scheduler settings
epoch = 3000
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001, nesterov=True)
scheduler = dict(type='PolyLR')
# dataset settings
dataset_type = "S3DISDataset"
data_root = "data/s3dis"
data = dict(
num_classes=13,
ignore_label=255,
names=['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter'],
train=dict(
type='S3DISDataset',
split=('Area_1', 'Area_2', 'Area_3', 'Area_4', 'Area_6'),
data_root=data_root,
transform=[
dict(type="CenterShift", apply_z=True),
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis='z', p=0.75),
dict(type="RandomRotate", angle=[-1, 1], axis='z', center=[0, 0, 0], p=0.5),
dict(type="RandomRotate", angle=[-1/64, 1/64], axis='x', p=0.5),
dict(type="RandomRotate", angle=[-1/64, 1/64], axis='y', p=0.5),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
dict(type="ChromaticJitter", p=0.95, std=0.05),
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
dict(type="Voxelize", voxel_size=0.05, hash_type='fnv', mode='train',
keys=("coord", "color", "label"), return_discrete_coord=True),
dict(type="SphereCrop", point_max=100000, mode='random'),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
dict(type="ShufflePoint"),
dict(type="ToTensor"),
dict(type="Collect", keys=("coord", "discrete_coord", "label"), feat_keys=["coord", "color"])
],
test_mode=False
),
val=dict(
type='S3DISDataset',
split='Area_5',
data_root=data_root,
transform=[
dict(type="CenterShift", apply_z=True),
dict(type="Copy", keys_dict={"coord": "origin_coord", "label": "origin_label"}),
dict(type="Voxelize", voxel_size=0.05, hash_type='fnv', mode='train',
keys=("coord", "color", "label"), return_discrete_coord=True),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
dict(type="ToTensor"),
dict(type="Collect",
keys=("coord", "discrete_coord", "origin_coord", "label", "origin_label"),
offset_keys_dict = dict(offset="coord", origin_offset="origin_coord"),
feat_keys=["coord", "color"])
],
test_mode=False),
test=dict(
type='S3DISDataset',
split='Area_5',
data_root=data_root,
transform=[
dict(type='CenterShift', apply_z=True),
dict(type='NormalizeColor')
],
test_mode=True,
test_cfg=dict(
voxelize=dict(
type='Voxelize',
voxel_size=0.05,
hash_type='fnv',
mode='test',
keys=('coord', 'color'),
return_discrete_coord=True),
crop=None,
post_transform=[
dict(type='CenterShift', apply_z=False),
dict(type='ToTensor'),
dict(
type='Collect',
keys=('coord', 'discrete_coord', 'index'),
feat_keys=('coord', 'color'))
],
aug_transform=[
[dict(type="RandomScale", scale=[0.9, 0.9])],
[dict(type="RandomScale", scale=[0.95, 0.95])],
[dict(type="RandomScale", scale=[1, 1])],
[dict(type="RandomScale", scale=[1.05, 1.05])],
[dict(type="RandomScale", scale=[1.1, 1.1])],
[dict(type="RandomScale", scale=[0.9, 0.9]),
dict(type="RandomFlip", p=1)],
[dict(type="RandomScale", scale=[0.95, 0.95]),
dict(type="RandomFlip", p=1)],
[dict(type="RandomScale", scale=[1, 1]),
dict(type="RandomFlip", p=1)],
[dict(type="RandomScale", scale=[1.05, 1.05]),
dict(type="RandomFlip", p=1)],
[dict(type="RandomScale", scale=[1.1, 1.1]),
dict(type="RandomFlip", p=1)],
]
)
)
)
criteria = [
dict(type="CrossEntropyLoss",
loss_weight=1.0,
ignore_index=data["ignore_label"])
]