-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathsemseg-ptv2m2-0-base.py
151 lines (146 loc) · 5.73 KB
/
semseg-ptv2m2-0-base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
_base_ = ['../_base_/default_runtime.py',
'../_base_/tests/segmentation.py']
# misc custom setting
batch_size = 12 # bs: total bs in all gpus
mix_prob = 0.8
empty_cache = False
enable_amp = True
# model settings
model = dict(
type="ptv2m2",
in_channels=6,
num_classes=13,
patch_embed_depth=2,
patch_embed_channels=48,
patch_embed_groups=6,
patch_embed_neighbours=16,
enc_depths=(2, 6, 2),
enc_channels=(96, 192, 384),
enc_groups=(12, 24, 48),
enc_neighbours=(16, 16, 16),
dec_depths=(1, 1, 1),
dec_channels=(48, 96, 192),
dec_groups=(6, 12, 24),
dec_neighbours=(16, 16, 16),
grid_sizes=(0.1, 0.2, 0.4),
attn_qkv_bias=True,
pe_multiplier=False,
pe_bias=True,
attn_drop_rate=0.,
drop_path_rate=0.3,
enable_checkpoint=False,
unpool_backend="interp", # map / interp
)
# scheduler settings
epoch = 3000
optimizer = dict(type='AdamW', lr=0.006, weight_decay=0.05)
scheduler = dict(type='MultiStepLR', milestones=[0.6, 0.8], gamma=0.1)
# dataset settings
dataset_type = "S3DISDataset"
data_root = "data/s3dis"
data = dict(
num_classes=13,
ignore_label=255,
names=['ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter'],
train=dict(
type='S3DISDataset',
split=('Area_1', 'Area_2', 'Area_3', 'Area_4', 'Area_6'),
data_root=data_root,
transform=[
dict(type="CenterShift", apply_z=True),
# dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis='z', p=0.75),
# dict(type="RandomRotate", angle=[-1, 1], axis='z', center=[0, 0, 0], p=0.5),
# dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis='x', p=0.5),
# dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis='y', p=0.5),
dict(type="RandomScale", scale=[0.9, 1.1]),
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
dict(type="RandomFlip", p=0.5),
dict(type="RandomJitter", sigma=0.005, clip=0.02),
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
dict(type="ChromaticJitter", p=0.95, std=0.05),
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
dict(type="Voxelize", voxel_size=0.04, hash_type='fnv', mode='train',
keys=("coord", "color", "label"), return_discrete_coord=True),
dict(type="SphereCrop", point_max=100000, mode='random'),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
# dict(type="ShufflePoint"),
dict(type="ToTensor"),
dict(type="Collect", keys=("coord", "discrete_coord", "label"), feat_keys=["coord", "color"])
],
test_mode=False
),
val=dict(
type='S3DISDataset',
split='Area_5',
data_root=data_root,
transform=[
dict(type="CenterShift", apply_z=True),
dict(type="Copy", keys_dict={"coord": "origin_coord", "label": "origin_label"}),
dict(type="Voxelize", voxel_size=0.04, hash_type='fnv', mode='train',
keys=("coord", "color", "label"), return_discrete_coord=True),
dict(type="CenterShift", apply_z=False),
dict(type="NormalizeColor"),
dict(type="ToTensor"),
dict(type="Collect",
keys=("coord", "discrete_coord", "label"),
offset_keys_dict=dict(offset="coord"),
feat_keys=["coord", "color"])
],
test_mode=False),
test=dict(
type='S3DISDataset',
split='Area_5',
data_root=data_root,
transform=[
dict(type='CenterShift', apply_z=True),
dict(type='NormalizeColor')
],
test_mode=True,
test_cfg=dict(
voxelize=dict(
type='Voxelize',
voxel_size=0.04,
hash_type='fnv',
mode='test',
keys=('coord', 'color'),
return_discrete_coord=True),
crop=None,
post_transform=[
dict(type='CenterShift', apply_z=False),
dict(type='ToTensor'),
dict(
type='Collect',
keys=('coord', 'discrete_coord', 'index'),
feat_keys=('coord', 'color'))
],
aug_transform=[
[dict(type="RandomScale", scale=[0.9, 0.9])],
[dict(type="RandomScale", scale=[0.95, 0.95])],
[dict(type="RandomScale", scale=[1, 1])],
[dict(type="RandomScale", scale=[1.05, 1.05])],
[dict(type="RandomScale", scale=[1.1, 1.1])],
[dict(type="RandomScale", scale=[0.9, 0.9]),
dict(type="RandomFlip", p=1)],
[dict(type="RandomScale", scale=[0.95, 0.95]),
dict(type="RandomFlip", p=1)],
[dict(type="RandomScale", scale=[1, 1]),
dict(type="RandomFlip", p=1)],
[dict(type="RandomScale", scale=[1.05, 1.05]),
dict(type="RandomFlip", p=1)],
[dict(type="RandomScale", scale=[1.1, 1.1]),
dict(type="RandomFlip", p=1)],
]
)
)
)
criteria = [
dict(type="CrossEntropyLoss",
loss_weight=1.0,
ignore_index=data["ignore_label"])
]