-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
50 lines (36 loc) · 1020 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from dataset import Dataset
from eda import EDA
from correlation import Correlation
from regression import Regression
from classifier import Classifier
import utilities as ut
# ----- INIT -----
ut.header()
# ----- READ ARGUMENTS -----
args = ut.read_args()
# ----- CLEAR PREVIOUS RESULTS -----
ut.clear_data(args['settings']['clear'])
# ----- LOAD DATASET -----
ds = Dataset(settings=args['dataset'])
# ----- REMOVED COLUMNS -----
ds.drop_cols()
# ----- REMOVED ROWS -----
ds.drop_rows()
# ----- NORMALIZED COLUMNS -----
ds.normalize()
# ----- COVERT COLUMNS FROM CATEGORIAL TO NUMERIC -----
ds.categorial_to_numeric()
# ----- DATASET BACKUP -----
ds.export_csv()
# ----- EXPLORATORY DATA ANALYSIS -----
eda = EDA()
eda.automate(ds)
# ----- CORRELATION -----
corr = Correlation()
corr.automate(ds)
# ----- LINEAR REGRESSION -----
lm = Regression(ds, args['regression'], args['settings'])
lm.automate()
# ----- CLASSIFIERS -----
clf = Classifier(ds, args['classification'], args['settings'])
clf.automate()