-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_ego_trajectory_encoder.py
148 lines (105 loc) · 4.37 KB
/
train_ego_trajectory_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
from trajectory_encoder_dataset import TrajectoryEncoderDataset
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from torch import nn
import numpy as np
from ego_trajectory_encoder import EgoTrajectoryEncoder
encoder = EgoTrajectoryEncoder()
optimizer = torch.optim.Adam(encoder.parameters(), lr=1e-4)
# criterion = torch.nn.MSELoss(reduction="mean").cuda()
# criterion = torch.nn.L1Loss().cuda()
criterion = nn.CosineSimilarity().cuda()
dataset = TrajectoryEncoderDataset()
batch_size = 16
validation_split = 0.2
shuffle_dataset = True
random_seed = 42
# Creating data indices for training and validation splits:
dataset_size = len(dataset)
indices = list(range(dataset_size))
split = int(np.floor(validation_split * dataset_size))
if shuffle_dataset:
np.random.seed(random_seed)
np.random.shuffle(indices)
train_indices, val_indices = indices[split:], indices[:split]
# Creating PT data samplers and loaders:
train_sampler = SubsetRandomSampler(train_indices)
valid_sampler = SubsetRandomSampler(val_indices)
train_dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, sampler=train_sampler
)
validation_dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, sampler=valid_sampler
)
# train_dataloader = DataLoader(training_data, batch_size=32, shuffle=True)
import wandb
wandb.init()
# Magic
wandb.watch(encoder, log_freq=100)
device = "cuda"
encoder.to(device)
# for epoch in range(1): # loop over the dataset multiple times
# running_loss = 0.0
# for i, data in enumerate(train_dataloader):
# # get the inputs; data is a list of [inputs, labels]
# inputs, labels = data
# inputs, labels = inputs.to(device), labels.to(device)
# # print(f"Inputs Shape: {inputs.shape}")
# # zero the parameter gradients
# optimizer.zero_grad()
# # forward + backward + optimize
# outputs = encoder(inputs)
# # print(f"Output Shape: {outputs.shape}")
# # print(f"Labels Shape: {labels.shape}")
# loss = criterion(outputs, labels)
# loss.backward()
# optimizer.step()
# if i % 10 == 0:
# wandb.log({"loss": loss})
# # print statistics
# running_loss += loss.item()
# if i % 2000 == 1999: # print every 2000 mini-batches
# print(f"[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}")
# running_loss = 0.0
for epoch in range(10): # Assuming you want to train for 10 epochs
encoder.train() # Set model to training mode
running_loss = 0.0
for i, data in enumerate(train_dataloader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = encoder(inputs)
# loss = criterion(outputs, labels)
# For Cosine Similarity Loss function
loss = torch.mean(torch.abs(criterion(labels, outputs)))
print(loss)
# back-propagation on the above *loss* will try cos(angle) = 0. But I want angle between the vectors to be 0 or cos(angle) = 1.
loss = 1 - loss
# End: For Cosine Similarity loss function
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 0: # Log training loss every 10 mini-batches
wandb.log({"train_loss": loss.item()})
# Validation phase
encoder.eval() # Set model to evaluation mode
val_running_loss = 0.0
val_loss = 0.0
with torch.no_grad():
for i, data in enumerate(validation_dataloader):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
outputs = encoder(inputs)
# loss = criterion(outputs, labels)
loss = torch.mean(torch.abs(criterion(labels, outputs)))
print(loss)
# back-propagation on the above *loss* will try cos(angle) = 0. But I want angle between the vectors to be 0 or cos(angle) = 1.
loss = 1 - loss
val_running_loss += loss.item()
val_loss = val_running_loss / len(validation_dataloader)
wandb.log({"val_loss": val_loss})
print(
f"Epoch {epoch + 1}, Train Loss: {running_loss / len(train_dataloader):.3f}, Val Loss: {val_loss:.3f}"
)
torch.save(encoder.state_dict(), "models/trajectory_encoder_wv_cos.pth")