-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathscenario_cnn.py
43 lines (38 loc) · 1.48 KB
/
scenario_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
from npz_utils import list_vehicle_files_absolute
import pytorch_lightning as pl
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader, TensorDataset
from scenario_encoder_dataset import ScenarioEncoderDataset
from pytorch_lightning.loggers import WandbLogger
class ScenarioCNN(pl.LightningModule):
def __init__(self, input_shape=(25, 224, 224), output_dim=1024):
super(ScenarioCNN, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=input_shape[0], out_channels=32, kernel_size=3, padding=1
)
self.conv2 = nn.Conv2d(
in_channels=32, out_channels=64, kernel_size=3, padding=1
)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.global_avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(64, output_dim) # Directly map to output dimension
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.global_avg_pool(x)
x = x.view(x.size(0), -1) # Flatten the tensor
x = self.fc(x)
return x
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.mse_loss(y_hat, y.float())
self.log("train_loss", loss)
print(loss)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer