-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy path03_frozenlake_tweaked.py
executable file
·125 lines (103 loc) · 4.08 KB
/
03_frozenlake_tweaked.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python3
import random
import gym
import gym.spaces
from collections import namedtuple
import numpy as np
from tensorboardX import SummaryWriter
import torch
import torch.nn as nn
import torch.optim as optim
HIDDEN_SIZE = 128
BATCH_SIZE = 100
PERCENTILE = 30
GAMMA = 0.9
class DiscreteOneHotWrapper(gym.ObservationWrapper):
def __init__(self, env):
super(DiscreteOneHotWrapper, self).__init__(env)
assert isinstance(env.observation_space, gym.spaces.Discrete)
self.observation_space = gym.spaces.Box(0.0, 1.0, (env.observation_space.n, ), dtype=np.float32)
def observation(self, observation):
res = np.copy(self.observation_space.low)
res[observation] = 1.0
return res
class Net(nn.Module):
def __init__(self, obs_size, hidden_size, n_actions):
super(Net, self).__init__()
self.net = nn.Sequential(
nn.Linear(obs_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, n_actions)
)
def forward(self, x):
return self.net(x)
Episode = namedtuple('Episode', field_names=['reward', 'steps'])
EpisodeStep = namedtuple('EpisodeStep', field_names=['observation', 'action'])
def iterate_batches(env, net, batch_size):
batch = []
episode_reward = 0.0
episode_steps = []
obs = env.reset()
sm = nn.Softmax(dim=1)
while True:
obs_v = torch.FloatTensor([obs])
act_probs_v = sm(net(obs_v))
act_probs = act_probs_v.data.numpy()[0]
action = np.random.choice(len(act_probs), p=act_probs)
next_obs, reward, is_done, _ = env.step(action)
episode_reward += reward
episode_steps.append(EpisodeStep(observation=obs, action=action))
if is_done:
batch.append(Episode(reward=episode_reward, steps=episode_steps))
episode_reward = 0.0
episode_steps = []
next_obs = env.reset()
if len(batch) == batch_size:
yield batch
batch = []
obs = next_obs
def filter_batch(batch, percentile):
disc_rewards = list(map(lambda s: s.reward * (GAMMA ** len(s.steps)), batch))
reward_bound = np.percentile(disc_rewards, percentile)
train_obs = []
train_act = []
elite_batch = []
for example, discounted_reward in zip(batch, disc_rewards):
if discounted_reward > reward_bound:
train_obs.extend(map(lambda step: step.observation, example.steps))
train_act.extend(map(lambda step: step.action, example.steps))
elite_batch.append(example)
return elite_batch, train_obs, train_act, reward_bound
if __name__ == "__main__":
random.seed(12345)
env = DiscreteOneHotWrapper(gym.make("FrozenLake-v0"))
# env = gym.wrappers.Monitor(env, directory="mon", force=True)
obs_size = env.observation_space.shape[0]
n_actions = env.action_space.n
net = Net(obs_size, HIDDEN_SIZE, n_actions)
objective = nn.CrossEntropyLoss()
optimizer = optim.Adam(params=net.parameters(), lr=0.001)
writer = SummaryWriter(comment="-frozenlake-tweaked")
full_batch = []
for iter_no, batch in enumerate(iterate_batches(env, net, BATCH_SIZE)):
reward_mean = float(np.mean(list(map(lambda s: s.reward, batch))))
full_batch, obs, acts, reward_bound = filter_batch(full_batch + batch, PERCENTILE)
if not full_batch:
continue
obs_v = torch.FloatTensor(obs)
acts_v = torch.LongTensor(acts)
full_batch = full_batch[-500:]
optimizer.zero_grad()
action_scores_v = net(obs_v)
loss_v = objective(action_scores_v, acts_v)
loss_v.backward()
optimizer.step()
print("%d: loss=%.3f, reward_mean=%.3f, reward_bound=%.3f, batch=%d" % (
iter_no, loss_v.item(), reward_mean, reward_bound, len(full_batch)))
writer.add_scalar("loss", loss_v.item(), iter_no)
writer.add_scalar("reward_mean", reward_mean, iter_no)
writer.add_scalar("reward_bound", reward_bound, iter_no)
if reward_mean > 0.8:
print("Solved!")
break
writer.close()