|
17 | 17 |
|
18 | 18 | os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2, 3"
|
19 | 19 |
|
20 |
| -root_dir = "/data/ptg/medical/bbn/data/Release_v0.5/v0.52" |
| 20 | +root_dir = "/data/PTG/medical/bbn_data/Release_v0.5/v0.52" |
21 | 21 | # root_dir = '/media/hannah.defazio/Padlock_DT/Data/notpublic/PTG/Release_v0.5'
|
22 | 22 |
|
23 | 23 |
|
@@ -202,9 +202,9 @@ def bbn_medical_data_loader(
|
202 | 202 | return valid_classes, data
|
203 | 203 |
|
204 | 204 |
|
205 |
| -def data_loader(split): |
| 205 | +def data_loader(split, task_name): |
206 | 206 | # Load gt bboxes for task
|
207 |
| - task_classes, task_bboxes = bbn_medical_data_loader("M2_Tourniquet", split=split) |
| 207 | + task_classes, task_bboxes = bbn_medical_data_loader(task_name, split=split) |
208 | 208 |
|
209 | 209 | # Combine task and person annotations
|
210 | 210 | # gt_bboxes = {**person_bboxes, **task_bboxes}
|
@@ -252,17 +252,18 @@ def save_as_kwcoco(classes, data, save_fn="bbn-data.mscoco.json"):
|
252 | 252 | dset.fpath = save_fn
|
253 | 253 | dset.dump(dset.fpath, newlines=True)
|
254 | 254 |
|
255 |
| - print_class_freq(dset) |
| 255 | + # print_class_freq(dset) |
256 | 256 |
|
257 | 257 |
|
258 | 258 | def main():
|
259 |
| - for split in ["train", "test"]: |
260 |
| - classes, gt_bboxes = data_loader(split) |
261 |
| - |
262 |
| - out = f"{root_dir}/M2_Tourniquet/YoloModel/M2_YoloModel_LO_{split}.mscoco.json" |
263 |
| - save_as_kwcoco(classes, gt_bboxes, save_fn=out) |
264 |
| - |
265 |
| - # TODO: train on out kwcoco file + save |
| 259 | + # Should be M1 folder, M2 folder, etc |
| 260 | + subfolders = os.listdir(root_dir) |
| 261 | + for task_name in subfolders: |
| 262 | + for split in ["train", "test"]: |
| 263 | + classes, gt_bboxes = data_loader(split, task_name) |
| 264 | + |
| 265 | + out = f"{root_dir}/{task_name}/YoloModel/{task_name}_YoloModel_LO_{split}.mscoco.json" |
| 266 | + save_as_kwcoco(classes, gt_bboxes, save_fn=out) |
266 | 267 |
|
267 | 268 |
|
268 | 269 | if __name__ == "__main__":
|
|
0 commit comments