-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_normal.py
296 lines (238 loc) · 12.4 KB
/
train_normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import argparse
import os
import json
import numpy as np
from datetime import datetime
from tqdm import tqdm
import torch
import torch.backends.cudnn as cudnn
from torch.optim import SGD
from torch.utils.tensorboard import SummaryWriter
from kd_lib import losses as kd_losses
from train import adversarial_loss as adv_losses
from kd_lib import utilities as utils
from models.selector import select_model
from utilities import dist_utils
from utilities.results import save_results_normal
from utilities.utils import ModelSaver, check_final
from data.dataset import DATASETS
from data.transforms import build_transforms
parser = argparse.ArgumentParser(description='Baseline Training')
# Model options
parser.add_argument('--exp_identifier', type=str, default='')
parser.add_argument('--model_architecture', type=str, default='ResNet18')
parser.add_argument('--dataset', default='cifar10', type=str)
parser.add_argument('--num_classes', default=10, type=int)
parser.add_argument('--resnet_multiplier', default=1, type=int)
parser.add_argument('--dtype', default='float', type=str)
parser.add_argument('--nthread', default=4, type=int)
# Dataset
parser.add_argument("--data_path", type=str, default='data')
parser.add_argument("--data_path_style", type=str, default=''),
parser.add_argument("--cache-dataset", action="store_true", default=False)
# Training options
parser.add_argument('--dropout', default=0, type=float)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--lr', default=0.01, type=float)
parser.add_argument('--epochs', default=200, type=int, help='number of total epochs to run for training the network')
parser.add_argument('--epoch_step', nargs='*', type=int, default=[60, 120, 160], help='json list with epochs to drop lr on')
parser.add_argument('--lr_decay_ratio', default=0.2, type=float)
parser.add_argument('--weight_decay', default=0.0005, type=float)
parser.add_argument('--checkpoint', default='', type=str)
parser.add_argument('--seeds', nargs='*', type=int, default=[0, 10])
parser.add_argument('--mode', default='normal', choices=['normal', 'madry', 'trades'])
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--scheduler', default='None', choices=['None','cosine', 'multistep'])
# Device options
parser.add_argument('--cuda', action='store_true')
# evaluation options
parser.add_argument("--save_freq", default=10, type=int, help="save frequency")
parser.add_argument("--train_eval_freq", default=10, type=int, help="evaluation frequency")
parser.add_argument("--test_eval_freq", default=10, type=int, help="evaluation frequency")
# storage options
parser.add_argument('--dataroot', default='data', type=str)
parser.add_argument('--output_dir', default='experiments', type=str)
parser.add_argument('--checkpoint_dir', default='', type=str)
# Feature prior options
parser.add_argument("--train_ftprior", action="store_true", default=False)
parser.add_argument('--ft_prior', type=str, default='std', choices=['std', 'sobel'])
parser.add_argument('--norm_std', type=str, default='False')
parser.add_argument('--norm_fp', type=str, default='False')
# Sobel filter options
parser.add_argument('--sobel_gauss_ksize', default=3, type=int)
parser.add_argument('--sobel_ksize', default=3, type=int)
parser.add_argument("--sobel_upsample", type=str, default='False')
# Adversarial training
parser.add_argument('--step_size', type=float, default=0.007)
parser.add_argument('--epsilon', type=float, default=0.031)
parser.add_argument('--perturb_steps', type=int, default=10)
parser.add_argument('--distance', default='l_inf', choices=['l_2', 'l_inf'])
parser.add_argument('--trades_beta', type=float, default=5)
parser.add_argument('--mixup_alpha', type=float, default=1)
parser.add_argument('--sev', type=int, default=1)
parser.add_argument('--cmnist_mode', default='fg', choices=['fg', 'bg', 'comb'])
# ======================================================================================
# Helper Functions
# ======================================================================================
def train_kd(args, model, device, train_loader, optimizer, epoch, writer):
model.train()
train_loss = 0
correct = 0
total = 0
num_batches = len(train_loader)
for batch_idx, (data, target) in tqdm(enumerate(train_loader), desc='batch training', total=num_batches):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
out = model(data)
iteration = (epoch * num_batches) + batch_idx
if args.mode == 'normal':
loss = kd_losses.cross_entropy(out, target)
writer.add_scalar('train/loss', loss.item(), iteration)
elif args.mode == 'madry':
loss, _, _ = adv_losses.madry_loss(model, data, target, optimizer)
writer.add_scalar('train/loss', loss.item(), iteration)
elif args.mode == 'trades':
loss, _, _ = adv_losses.trades_loss(model, data, target, optimizer, beta=args.trades_beta)
writer.add_scalar('train/loss', loss.item(), iteration)
else:
raise ValueError('Incorrect Method selected')
# perform back propagation
loss.backward()
optimizer.step()
train_loss += loss.data.item()
_, predicted = torch.max(out.data, 1)
total += target.size(0)
correct += predicted.eq(target.data).cpu().float().sum()
b_idx = batch_idx
print('Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss / (b_idx + 1), 100. * correct / total, correct, total))
# ======================================================================================
# Training Function
# ======================================================================================
def solver(args):
log_dir = os.path.join(args.experiment_name, 'logs')
model_dir = os.path.join(args.experiment_name, 'checkpoints')
os.makedirs(log_dir, exist_ok=True)
os.makedirs(model_dir, exist_ok=True)
log_path = os.path.join(log_dir, datetime.now().strftime('%Y%m%d_%H%M'))
writer = SummaryWriter(log_path)
use_cuda = args.cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
print('device: %s' % device)
if use_cuda:
torch.cuda.set_device(0)
cudnn.benchmark = True
if args.dataset =='imagenet' or args.dataset =='imagenet200':
ds_class = DATASETS[args.dataset](args.data_path, cache_dataset=True)
elif args.dataset =='style_tiny':
ds_class = DATASETS[args.dataset](args.data_path, args.data_path_style)
elif args.dataset =='col_mnist':
ds_class = DATASETS[args.dataset](args.data_path, args.cmnist_mode)
elif args.dataset =='cor_tinyimagenet':
ds_class = DATASETS[args.dataset](args.data_path, args.sev)
else:
ds_class = DATASETS[args.dataset](args.data_path)
#load transforms
transform_train, transform_test = build_transforms(args, ds_class)
# load dataset
trainset = ds_class.get_dataset('train', transform_train, transform_test)
testset = ds_class.get_dataset('test', transform_train, transform_test)
#data
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers)
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers)
# Load model
args.num_classes = ds_class.NUM_CLASSES
cifar_resnet = True
if args.dataset == 'imagenet200':
cifar_resnet = False
model = select_model(args.model_architecture, args.num_classes, cifar_resnet).to(device)
optimizer = SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
saver = ModelSaver(model_dir)
#csvwriter = csvWriter(args)
scheduler = None
if args.scheduler == 'multistep':
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.epoch_step, gamma=0.1)
elif args.scheduler == 'cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
start_epoch = 0
if os.listdir(model_dir):
model, optimizer, start_epoch = saver.load_checkpoint(model, optimizer, model_dir)
print('*' * 60 + '\nTraining Mode: %s\n' % args.mode + '*' * 60)
for epoch in tqdm(range(1, args.epochs + 1), desc='training epochs'):
if epoch <= start_epoch:
continue
# adjust learning rate for SGD
if scheduler:
scheduler.step()
else:
utils.adjust_learning_rate(epoch, args.epoch_step, args.lr_decay_ratio, optimizer)
train_kd(args, model, device, train_loader, optimizer, epoch, writer)
# evaluation on natural examples
if epoch % args.train_eval_freq == 0:
print("================================================================")
train_loss, train_accuracy, correct = utils.eval(model, device, train_loader)
print("Training: Average loss: {:.4f}, Accuracy: {}/{} ({}%)".format(
train_loss, correct, len(train_loader.dataset), train_accuracy * 100))
print("================================================================")
writer.add_scalar("Train/train_loss", train_loss, epoch)
writer.add_scalar("Train/train_accuracy", train_accuracy, epoch)
if epoch % args.test_eval_freq == 0:
print("================================================================")
test_loss, test_accuracy, correct = utils.eval(model, device, test_loader)
print("Test: Average loss: {:.4f}, Accuracy: {}/{} ({}%)".format(
test_loss, correct, len(test_loader.dataset), test_accuracy * 100))
print("================================================================")
print("================================================================")
writer.add_scalar("Test/test_loss", test_loss, epoch)
writer.add_scalar("Test/test_accuracy", test_accuracy, epoch)
if epoch != args.epochs:
saver.save_models(model, optimizer, epoch, test_accuracy)
# get final test accuracy
test_loss, test_accuracy, correct = utils.eval(model, device, test_loader)
writer.close()
# save model
torch.save(model, os.path.join(model_dir, 'final_model.pth'))
return test_loss, test_accuracy, saver.best, saver.best_epoch
def main(args):
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
base_name = "%s_%s_%s_mode_%s_%sepochs" % (args.exp_identifier, args.model_architecture, args.mode, args.dataset, args.epochs)
base_dir = os.path.join(args.output_dir, base_name)
os.makedirs(base_dir, exist_ok=True)
# save training arguments
args_path = os.path.join(base_dir, 'args.txt')
z = vars(args).copy()
with open(args_path, 'w') as f:
f.write('arguments: ' + json.dumps(z) + '\n')
if len(args.seeds) > 1:
lst_test_accs = []
lst_test_loss = []
lst_best_accs = []
lst_best_epochs = []
for seed in args.seeds:
print('\n\n----------- SEED {} -----------\n\n'.format(seed))
utils.set_torch_seeds(seed)
args.experiment_name = os.path.join(args.output_dir, base_name, base_name + '_seed' + str(seed))
test_loss, test_accuracy, best_accuracy, best_epoch = solver(args)
lst_test_loss.append(test_loss)
lst_test_accs.append(test_accuracy)
lst_best_accs.append(best_accuracy)
lst_best_epochs.append(best_epoch)
mu = np.mean(lst_test_accs)
sigma = np.std(lst_test_accs)
for i in range(len(args.seeds)):
save_results_normal(args, os.path.join(args.output_dir, base_name, 'results.csv'),
lst_test_loss[i], lst_test_accs[i], lst_best_epochs[i], lst_best_accs[i], args.seeds[i], mu, sigma)
else:
utils.set_torch_seeds(args.seeds[0])
args.experiment_name = os.path.join(args.output_dir, base_name, base_name + '_seed' + str(args.seeds[0]))
if check_final(args):
exit()
test_loss, test_accuracy, best_accuracy, best_epoch = solver(args)
save_results_normal(args, os.path.join(args.output_dir, base_name, 'results.csv'),
test_loss, test_accuracy, best_epoch, best_accuracy)
if __name__ == '__main__':
args = parser.parse_args()
dist_utils.init_distributed_mode(args)
main(args)