-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_inbiased_adverserial.py
357 lines (292 loc) · 16.5 KB
/
train_inbiased_adverserial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import argparse
import os
import json
import numpy as np
from datetime import datetime
from tqdm import tqdm
import torch
import pandas as pd
import torch.backends.cudnn as cudnn
from torch.optim import SGD
from torch.utils.tensorboard import SummaryWriter
from kd_lib import utilities as utils
from models.selector import select_model
from data.dataset import DATASETS
from data.transforms import build_transforms
from utilities.utils import ModelSaver
from train.adv_train import adv_training
from train.adversarial_loss import eval_adv_robustness
from utilities.results import save_results_adv, print_result
parser = argparse.ArgumentParser(description='InBiased-Adversarial Training')
# Model options
parser.add_argument('--exp_identifier', type=str, default='')
parser.add_argument('--model1_architecture', type=str, default='ResNet18')
parser.add_argument('--model2_architecture', type=str, default='ResNet18')
parser.add_argument('--resnet_multiplier', type=int, default=1)
# Dataset
parser.add_argument('--num_classes', default=10, type=int)
parser.add_argument('--use_imbalanced_dataset', action='store_true', default=False)
parser.add_argument('--imbalance_gamma', type=float, default=1)
parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'cifar100', 'stl10', 'stltint', 'tinyimagenet', 'imagenet'])
parser.add_argument('--label_corrupt_prob', default=0, type=float)
parser.add_argument("--data_path", type=str, default='data'), #choices=['data', '/data/input/datasets/tiny_imagenet/tiny-imagenet-200', '/data/input/datasets/ImageNet_2012'])
# Training options
parser.add_argument('--dtype', type=str, default='float')
parser.add_argument('--nthread', type=int, default=4)
parser.add_argument('--dropout', type=float, default=0)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--epochs', type=int, default=200, help='number of total epochs to run for training the network')
parser.add_argument('--epoch_step', nargs='*', type=int, default=[60, 120, 160], help='json list with epochs to drop lr on')
parser.add_argument('--lr_decay_ratio', type=float, default=0.2)
parser.add_argument('--weight_decay', type=float, default=0.0005)
parser.add_argument('--checkpoint', type=str, default='')
parser.add_argument('--seeds', nargs='*', type=int, default=[0, 10])
parser.add_argument('--scheduler', default='None', choices=['None', 'cosine', 'multistep'])
# knowledge distillation methods
parser.add_argument('--mode', default='dml_adv')
parser.add_argument('--temperature', type=float, default=1)
parser.add_argument('--loss_type', nargs='*', type=str, default=['kl'], help="--loss_type kl at")
parser.add_argument('--loss_dynamic', action='store_true')
parser.add_argument('--loss_schedule', nargs='*', type=int, default=[120, 160])
parser.add_argument('--loss_decay', nargs='*', type=float, default=[0.1, 0.01])
parser.add_argument('--loss_wt_kl1', type=float, default='1.0')
parser.add_argument('--loss_wt_at1', type=float, default='1.0')
parser.add_argument('--loss_wt_l21', type=float, default='1.0')
parser.add_argument('--loss_wt_kl2', type=float, default='1.0')
parser.add_argument('--loss_wt_at2', type=float, default='1.0')
parser.add_argument('--loss_wt_l22', type=float, default='1.0')
#Adverserial options
parser.add_argument('--train_adv', action="store_true", default=True)
parser.add_argument('--adv_loss_type', nargs='*', type=str, default=['madry'])
parser.add_argument('--adv_option', type=str, default='v1')
parser.add_argument('--epsilon', type=float, default=0.015)
parser.add_argument('--num_steps', type=int, default=10)
parser.add_argument('--step_size', type=float, default=0.007)
parser.add_argument('--beta', type=float, default=5)
parser.add_argument('--distance', type=str, default='l_inf')
parser.add_argument('--eval_epsilon', type=float, default=0.015)
parser.add_argument('--eval_num_steps', type=int, default=20)
parser.add_argument('--eval_step_size', type=float, default=0.003)
# Feature prior options
parser.add_argument("--train_ftprior", action="store_true", default=False)
parser.add_argument('--ft_prior', type=str, default='std', choices=['std', 'sobel'])
parser.add_argument('--norm_std', type=str, default='False')
parser.add_argument('--norm_fp', type=str, default='False')
# Device options
parser.add_argument('--cuda', action='store_true')
# evaluation options
parser.add_argument("--save_freq", type=int, default=10)
parser.add_argument("--train_eval_freq", type=int, default=10)
parser.add_argument("--test_eval_freq", type=int, default=10)
# storage options
parser.add_argument('--dataroot', type=str, default='data')
parser.add_argument('--output_dir', type=str, default='experiments')
parser.add_argument('--model1_dir', default='', type=str)
parser.add_argument('--model2_dir', default='', type=str)
# Sobel filter options
parser.add_argument('--sobel_gauss_ksize', default=3, type=int)
parser.add_argument('--sobel_ksize', default=3, type=int)
parser.add_argument("--sobel_upsample", type=str, default='True')
# ======================================================================================
# Helper Functions
# ======================================================================================
def train_dml_adv(args, model1, model2, device, train_loader, optimizer_m1, optimizer_m2, epoch, writer):
model1.train()
model2.train()
m1_train_loss = 0
m1_correct = 0
m2_train_loss = 0
m2_correct = 0
total = 0
num_batches = len(train_loader)
for batch_idx, (data1, data2, target) in tqdm(enumerate(train_loader), desc='batch training', total=num_batches):
data1, data2, target = data1.to(device), data2.to(device), target.to(device)
# reset the gradients
optimizer_m1.zero_grad()
optimizer_m2.zero_grad()
iteration = (epoch * num_batches) + batch_idx
m1_train_loss, m1_acc, m1_correct, m2_train_loss, m2_acc, m2_correct = adv_training(
args,
iteration,
num_batches,
model1,
model2,
data1,
data2,
target,
optimizer_m1,
optimizer_m2,
m1_train_loss,
m1_correct,
m2_train_loss,
m2_correct,
total,
writer
)
print("Model 1 Loss: %.3f | Acc: %.3f%% (%d/%d)" % (m1_train_loss, m1_acc, m1_correct, total))
print("Model 2 Loss: %.3f | Acc: %.3f%% (%d/%d)" % (m2_train_loss, m2_acc, m2_correct, total))
# ======================================================================================
# Training Function
# ======================================================================================
def solver(args):
print(args.experiment_name)
log_dir = os.path.join(args.experiment_name, 'logs')
model_dir = os.path.join(args.experiment_name, 'checkpoints')
os.makedirs(log_dir, exist_ok=True)
os.makedirs(model_dir, exist_ok=True)
log_path = os.path.join(log_dir, datetime.now().strftime('%Y%m%d_%H%M'))
writer = SummaryWriter(log_path)
use_cuda = args.cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
print('device: %s' % device)
if use_cuda:
torch.cuda.set_device(0)
cudnn.benchmark = True
# load dataset
ds_class = DATASETS[args.dataset](args.data_path)
ft_prior = args.ft_prior
args.ft_prior = 'std'
transform_train, transform_test = build_transforms(args, ds_class)
args.ft_prior = ft_prior
transform_train_fp, transform_test_fp = build_transforms(args, ds_class)
trainset = ds_class.get_dataset('train', transform_train, transform_test, transform_train_fp, transform_test_fp)
testset = ds_class.get_dataset('test', transform_train, transform_test, transform_train_fp, transform_test_fp)
print("==> Preparing data..")
train_loader = torch.utils.data.DataLoader(
trainset, batch_size=args.batch_size, shuffle=True, num_workers=4
)
test_loader = torch.utils.data.DataLoader(
testset, batch_size=args.batch_size, shuffle=False, num_workers=4
)
print("Dataset Loaded")
args.num_classes = ds_class.NUM_CLASSES
# Initialize Models
cifar_resnet = False
if 'cifar' in args.dataset or 'stl' in args.dataset or 'celeb' in args.dataset or 'tiny' in args.dataset:
cifar_resnet = True
args.num_classes = ds_class.NUM_CLASSES
model1 = select_model(args.model1_architecture, args.num_classes, cifar_resnet).to(device)
model2 = select_model(args.model2_architecture, args.num_classes, cifar_resnet).to(device)
optimizer_m1 = SGD(model1.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
optimizer_m2 = SGD(model2.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
scheduler_m1 = None
scheduler_m2 = None
if args.scheduler == 'multistep':
scheduler_m1 = torch.optim.lr_scheduler.MultiStepLR(optimizer_m1, milestones=args.epoch_step, gamma=0.1)
scheduler_m2 = torch.optim.lr_scheduler.MultiStepLR(optimizer_m2, milestones=args.epoch_step, gamma=0.1)
elif args.scheduler == 'cosine':
scheduler_m1 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_m1, T_max=args.epochs)
scheduler_m2 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer_m2, T_max=args.epochs)
saver_m1 = ModelSaver(model_dir, base_name='model1')
saver_m2 = ModelSaver(model_dir, base_name='model2')
start_epoch = 0
if args.model1_dir != '':
model1, optimizer_m1, start_epoch = saver_m1.load_checkpoint(model1, optimizer_m1, args.model1_dir)
model2, optimizer_m2, start_epoch = saver_m2.load_checkpoint(model2, optimizer_m2, args.model2_dir)
print('*' * 60 + '\nTraining the model with %s\n' % args.mode + '*' * 60)
for epoch in tqdm(range(1, args.epochs + 1), desc='training epochs'):
if epoch < start_epoch:
continue
# adjust learning rate for SGD
if scheduler_m1:
scheduler_m1.step()
scheduler_m2.step()
else:
utils.adjust_learning_rate(epoch, args.epoch_step, args.lr_decay_ratio, optimizer_m1)
utils.adjust_learning_rate(epoch, args.epoch_step, args.lr_decay_ratio, optimizer_m2)
train_dml_adv(args, model1, model2, device, train_loader, optimizer_m1, optimizer_m2, epoch, writer)
# evaluation on natural examples
if epoch % args.train_eval_freq == 0:
print("================================================================")
train_loss_m1, train_accuracy_m1, correct_m1,\
train_loss_m2, train_accuracy_m2, correct_m2 = utils.test_inbiased(model1, model2, device, train_loader)
print("Model 1 Training: Average loss: {:.4f}, Accuracy: {}/{} ({}%)".format(
train_loss_m1, correct_m1, len(train_loader.dataset), train_accuracy_m1 * 100))
print("================================================================")
writer.add_scalar("Train/m1_train_loss", train_loss_m1, epoch)
writer.add_scalar("Train/m1_train_accuracy", train_accuracy_m1, epoch)
print("Model 2 Training: Average loss: {:.4f}, Accuracy: {}/{} ({}%)".format(
train_loss_m2, correct_m2, len(train_loader.dataset), train_accuracy_m2 * 100))
print("================================================================")
writer.add_scalar("Train/m2_train_loss", train_loss_m2, epoch)
writer.add_scalar("Train/m2_train_accuracy", train_accuracy_m2, epoch)
if epoch % args.test_eval_freq == 0:
print("================================================================")
test_loss_m1, test_accuracy_m1, correct_m1, \
test_loss_m2, test_accuracy_m2, correct_m2 = utils.test_inbiased(model1, model2, device, test_loader)
print("Model 1 Test: Average loss: {:.4f}, Accuracy: {}/{} ({}%)".format(
test_loss_m1, correct_m1, len(test_loader.dataset), test_accuracy_m1 * 100))
print("================================================================")
writer.add_scalar("Test/m1_test_loss", test_loss_m1, epoch)
writer.add_scalar("Test/m1_test_accuracy", test_accuracy_m1, epoch)
saver_m1.save_models(model1, optimizer_m1, epoch, test_accuracy_m1)
print("Model 2 Test: Average loss: {:.4f}, Accuracy: {}/{} ({}%)".format(
test_loss_m2, correct_m2, len(test_loader.dataset)
, test_accuracy_m2 * 100))
print("================================================================")
writer.add_scalar("Test/m2_test_loss", test_loss_m2, epoch)
writer.add_scalar("Test/m2_test_accuracy", test_accuracy_m2, epoch)
saver_m2.save_models(model2, optimizer_m2, epoch, test_accuracy_m2)
natural_accuracy_m1, adv_acc_m1 = eval_adv_robustness(model1,test_loader,args.eval_epsilon,
args.eval_num_steps,args.eval_step_size,random=True,device='cuda' if args.cuda else 'cpu')
print("================================================================")
writer.add_scalar("Test/m1_natural_accuracy", natural_accuracy_m1, epoch)
writer.add_scalar("Test/m2_adversarial_accuracy", adv_acc_m1, epoch)
# get final test accuracy
#test_loss, test_accuracy, correct = utils.eval(test_natural_accuracy_m1, test_adv_acc_m1)
test_loss_m1, test_accuracy_m1, correct_m1, \
test_loss_m2, test_accuracy_m2, correct_m2 = utils.test_inbiased(model1, model2, device, test_loader)
natural_accuracy_m1, adv_acc_m1 = eval_adv_robustness(model1, test_loader, args.eval_epsilon,
args.eval_num_steps, args.eval_step_size, random=True,
device='cuda' if args.cuda else 'cpu')
writer.close()
# save model
torch.save(model1, os.path.join(model_dir, 'final_model1.pt'))
torch.save(model2, os.path.join(model_dir, 'final_model2.pt'))
return test_loss_m1, test_accuracy_m1, adv_acc_m1, test_loss_m2, test_accuracy_m2
def main(args):
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
base_name = "%s_%s_%s_%s_%sep" % (args.exp_identifier, args.mode, args.model1_architecture, args.dataset, args.epochs)
base_dir = os.path.join(args.output_dir, base_name)
os.makedirs(base_dir, exist_ok=True)
# save training arguments
args_path = os.path.join(base_dir, 'args.txt')
z = vars(args).copy()
with open(args_path, 'w') as f:
f.write('arguments: ' + json.dumps(z) + '\n')
if len(args.seeds) > 1:
lst_test_loss_m1 = []
lst_test_accs_m1 = []
lst_test_loss_m2 = []
lst_test_accs_m2 = []
lst_adv_accs_m1 = []
for seed in args.seeds:
print('\n\n----------- SEED {} -----------\n\n'.format(seed))
utils.set_torch_seeds(seed)
args.experiment_name = os.path.join(args.output_dir, base_name, base_name + '_seed' + str(seed))
test_loss_m1, test_accuracy_m1, adv_accuracy_m1, \
test_loss_m2, test_accuracy_m2 = solver(args)
lst_test_loss_m1.append(test_loss_m1)
lst_test_accs_m1.append(test_accuracy_m1)
lst_test_loss_m2.append(test_loss_m2)
lst_test_accs_m2.append(test_accuracy_m2)
lst_adv_accs_m1.append(adv_accuracy_m1)
mu = np.mean(lst_test_loss_m1)
sigma = np.std(lst_test_accs_m1)
for i in range(len(args.seeds)):
save_results_adv(args, os.path.join(args.output_dir, base_name, 'results.csv'), lst_test_loss_m1[i],
lst_test_accs_m1[i], lst_adv_accs_m1[i], lst_test_loss_m2[i], lst_test_accs_m2[i], args.seeds[i], mu, sigma)
else:
utils.set_torch_seeds(args.seeds[0])
args.experiment_name = os.path.join(args.output_dir, base_name, base_name + '_seed' + str(args.seeds[0]))
test_loss_m1, test_accuracy_m1, adv_acc_m1, test_loss_m2, test_accuracy_m2 = solver(args)
save_results_adv(args, os.path.join(args.output_dir, base_name, 'results.csv'), test_loss_m1, test_accuracy_m1,
adv_acc_m1, test_loss_m2, test_accuracy_m2)
print('\n\nFINAL MODEL1 TEST ACC RATE: {:02.2f}'.format(test_accuracy_m1*100))
print('\n\nFINAL MODEL1 ADV TEST ACC RATE: {:02.2f}'.format(adv_acc_m1*100))
print('\n\nFINAL MODEL2 TEST ACC RATE: {:02.2f}'.format(test_accuracy_m2*100))
if __name__ == '__main__':
args = parser.parse_args()
main(args)