-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path8_KNN.py
33 lines (23 loc) · 1.14 KB
/
8_KNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn import datasets
iris=datasets.load_iris()
print("Iris Data set loaded...")
x_train, x_test, y_train, y_test = train_test_split(iris.data,iris.target,test_size=0.1)
print("Dataset is split into training and testing...")
print("Size of trainng data and its label",x_train.shape,y_train.shape)
print("Size of testing data and its label",x_test.shape, y_test.shape)
for i in range(len(iris.target_names)):
print("Label", i , "-",str(iris.target_names[i]))
classifier = KNeighborsClassifier(n_neighbors=1)
classifier.fit(x_train, y_train)
y_pred=classifier.predict(x_test)
print("Results of Classification using K-nn with K=1 ")
for r in range(0,len(x_test)):
print(" Sample:", str(x_test[r]), " Actual-label:", str(y_test[r]), " Predicted-label:",str(y_pred[r]))
print("Classification Accuracy :" , classifier.score(x_test,y_test));
from sklearn.metrics import classification_report, confusion_matrix
print('Confusion Matrix')
print(confusion_matrix(y_test,y_pred))
print('Accuracy Metrics')
print(classification_report(y_test,y_pred))