-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path1_Astar.py
72 lines (60 loc) · 2.23 KB
/
1_Astar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def aStarAlgo(start_node, stop_node):
open_set, closed_set = set(start_node), set()
parents , g = {} ,{}
g[start_node],parents[start_node] = 0, start_node
while len(open_set) > 0:
n = None
for v in open_set:
if n == None or g[v] + heuristic(v) < g[n] + heuristic(n):
n = v
if n == stop_node :
pass
else:
for (m, weight) in get_neighbors(n):
if m not in open_set and m not in closed_set:
open_set.add(m)
parents[m] = n
g[m] = g[n] + weight
else:
if g[m] > g[n] + weight:
g[m] = g[n] + weight
parents[m] = n
if m in closed_set:
closed_set.remove(m)
open_set.add(m)
if n == None:
print('Path does not exist!')
return None
if n == stop_node:
path = []
while parents[n] != n:
path.append(n)
n = parents[n]
path.append(start_node)
path.reverse()
print('Path found: {}'.format(path))
return path
open_set.remove(n)
closed_set.add(n)
print('Path does not exist!')
return None
def get_neighbors(v):
return Graph_nodes.get(v,None)
def heuristic(n):
H_dist = {
'A': 10,'B': 8,'C': 5,'D': 7,'E': 3,'F': 6,
'G': 5,'H': 3,'I': 1,'J': 0
}
return H_dist[n]
Graph_nodes = {
'A': [('B', 6), ('F', 3)],
'B': [('C', 3), ('D', 2)],
'C': [('D', 1), ('E', 5)],
'D': [('C', 1), ('E', 8)],
'E': [('I', 5), ('J', 5)],
'F': [('G', 1),('H', 7)] ,
'G': [('I', 3)],
'H': [('I', 2)],
'I': [('E', 5), ('J', 3)],
}
aStarAlgo('A', 'J')