-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse.py
76 lines (61 loc) · 3.27 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import argparse
import torch
dset_stats = {
'CIFAR100': {'n_classes': 100},
'CIFAR10': {'n_classes': 10},
'CORE50': {'n_classes': 50},
'CORE50_CI': {'n_classes': 50},
'TinyImageNet':{'n_classes':200},
'Synbols':{'n_classes':200}
}
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--run_name", type=str, default="test")
parser.add_argument("--dataset", type=str, default="CIFAR100")
parser.add_argument("--cuda", type=int, default=0, help="Select zero-indexed cuda device. -1 to use CPU.")
parser.add_argument("--temperature", type=float, default=6.5)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--val_split", type=float, default=0.0)
parser.add_argument("--bsize", type=int, default=256)
parser.add_argument("--n_experiences", type=int, default=10)
parser.add_argument("--weight_sharing", action ="store_false")
parser.add_argument("--model", type=str, default='gresnet32')
parser.add_argument("--load_model_from_run", type=str, default='')
parser.add_argument("--wd", type=float, default=0.0)
parser.add_argument("--lr", type=float, default=0.005)
parser.add_argument("--epochs", type=int, default=4) # <------- epochs train
parser.add_argument("--scheduler", type=int, nargs='+', default=[35,50])
parser.add_argument("--wd_distillation", type=float, default=0)
parser.add_argument("--lr_distillation", type=float, default=0.035)
parser.add_argument("--epochs_distillation", type=int, default=4) # <------- epochs distillation
parser.add_argument("--distill_beta", type=float, default=5)
parser.add_argument("--scheduler_distillation", type=int, nargs='+', default=[40,60])
parser.add_argument("--details", type=str, nargs ='+', default="baseline cifar100")
parser.add_argument("--dropout", type=float, default=0.,help="Select prob of dropout")
parser.add_argument("--self_distillation", action ="store_true")
parser.add_argument("--packnet_original", action ="store_true")
parser.add_argument("--no_bn", action ="store_true")
parser.add_argument("--plot_gradients", action ="store_false")
parser.add_argument("--log_every", type=int, default=2)
parser.add_argument("--plot_gradients_of_layer", type=int, default=1)
parser.add_argument("--distill_loss", type=str, default="JS")
options = parser.parse_args()
##### post processing arguments #####
# append seed to run_name
options.run_name = options.run_name + f"_{options.seed}"
if options.load_model_from_run:
options.load_model_from_run = options.load_model_from_run + f"_{options.seed}"
options.device = torch.device(f"cuda:{options.cuda}" if torch.cuda.is_available() and options.cuda >= 0 else "cpu")
options.n_classes = dset_stats[options.dataset]['n_classes']
if options.packnet_original:
options.self_distillation = True
options.distill_beta = 0.
if options.dataset == 'CORE50' and options.datasset != 'CORE50_CI':
options.classes_per_exp = options.n_classes
options.n_experiences = 11
else:
options.classes_per_exp = options.n_classes // options.n_experiences
print(options)
return options
args = get_args()