-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnextflow.config.Visium.mouse
149 lines (137 loc) · 5.91 KB
/
nextflow.config.Visium.mouse
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// Default configs
params {
// General
// No need to modify
workflowpath = "${projectDir}"
// author name to add to the final report
authorname = "Liu,Leo"
// one of scRNAseq, Visium
data_type = "Visium"
// Full path to a .txt file containing a list of genes,one gene per line
// set to "NA" to disable
feature_list = "${projectDir}/testdata/feature_gene.txt"
// output directory
output_dir = "${projectDir}/output/"
// Path to gene level annotation file. This is used to add feature level meta data
geneinfo = "${projectDir}/docs/mouse_gene_info_2020A.tsv"
// QC
qc_only = true
// "0" or "1" to indicate whether to perform ambient RNA removal/correction using SoupX
// only applicable to scRNAseq
ambient_RNA_removal_flag = "0"
// "0" or "1" to indicate whether to perfrom doublet removal using scDblFinder
// only applicable to scRNAseq
doublet_removal_flag = "0"
// "0" or "1" to indicate whether to apply adaptive cutoff idenfication (based on IQR)
adaptive_cutoff_flag = "1"
// Cutoff for percentage of mitochondria concentration
// cells with values higher than the cutoff will be removed
mt_cutoff = 40
// Cutoff for percentage of hemoglobin concentration
// cells with values higher than the cutoff will be removed
hb_cutoff = 20
// Cutoff for total number of detectable genes/features
// cells with values lower than the cutoff will be removed
nFeature_cutoff = 50
// Cutoff for total number of UMI counts
// cells with values lower than the cutoff will be removed
nCount_cutoff = 200
// Cutoff for number of cells with expression for feature/gene
// genes/features with values lower than the cutoff will be removed
nCell_cutoff = 10
// Normalization
// normalization method for dimension reduction and clustering, either SCT or LogNormalize
norm_dimreduc = "LogNormalize"
// normalization method for differential testing, either SCT or LogNormalize
norm_diff = "LogNormalize"
// cell-cyle
// "0" or "1" to indicate whether to estimate and correct for cell-cycle effect.
cellcycle_correction_flag = "1"
// path to gene list (Gene symbols) for cell-cycle S-phase, one gene per line
// required if cellcycle_correction is set to "1"
genelist_S_phase = "${projectDir}/docs/S_genes_mouse.tsv"
// path to gene list (gene symbols) for cell-cycle G2M-phase, one gene per line
// required if cellcycle_correction is set to "1"
genelist_G2M_phase = "${projectDir}/docs/G2M_genes_mouse.tsv"
// Analysis strategy
// "0" or "1" indicating whether to perform merge-based analysis
merge_analysis = false
// "0" or "1" indicating whether to perform integration-based analysis
integration_analysis = true
// if merge_analysis is enabled, whether to stop after merge-based analysis. Could be useful if you want to evaluate parameters like resolution.
merge_only = false
// if integration_analysis is enabled, whether to stop after integration-based analysis. Could be useful if you want to evaluate parameters like resolution.
integration_only = false
// Integration strategy
// cca, rpca, harmony, fastmnn, or scvi
integration_method = "harmony"
// "0" or "1" to indicate whether to perform sketch-based workflow
sketch_flag = "0"
// Clustering
// Resolution parameter used to identify number of clusters
resolution = 0.8
// Method used for visualization, either tsne or umap
vismethod = "umap"
// method for spatial clustering, Banksy or Seurat
// only applicable to spatial data
spatial_cluster = "Banksy"
// lambda parameter for Banksy, larger values yield more spatially coherent domains. For Visuim, recommend to use 0.2 for domain segmentation. For Visuim HD, use 0.2 for cell typing, and 0.8 for domain segmentation
// only applicable to spatial data
lambda = 0.2
// k_geom parameter for Banksy, larger values will yield larger domains. Recommend to use 18 for Visium data
// only applicable to spatial data
k_geom = 18
// Differential expression
// Character value specifying control group for differential expression analysis
// Set to NA to disable
control_var = "Control"
// Character value specifying case group for differential expression analysis
// Set to NA to disable
case_var = "Case"
// Covariates to adjust, when performing differential analysis between conditions
// values should be from column names from sampleinfo file
// e.g, if sampleinfo file contains information for 'age' and 'gender',
// and you want to correct for age and gender effects, you can specify
// covariate_list = "age,gender"
// note that if covariate_list is set, you will need to choose one of
// LR, negbinom, poisson or MAST as method for statistical test.
covariate_list = "NA"
// Denotes which statistical test to use
// refer to FindMarkers function for more details
test = "wilcox"
// fold change cutoff to identify differentially expressed genes
fc = 2
// p value cutoff to identify differentially expressed genes
pval = 0.01
// "0" or "1" to indicate whether to use Bonferroni adjusted p value
pval_flag = "1"
// percentage of experssion cutoff to identify differentially expressed genes
// require at least one of the group (e.g. control or case)
// to have percentage of cells expressing a gene above specified value.
pct=20
}
profiles {
// Default profile (local execution)
local {
process.executor = 'local'
process.memory = '100Gb'
process.INTEGRATESAMPLES.memory = '200G'
workDir = './work'
}
// SLURM execution profile
slurm {
process.executor = 'slurm'
process.queue = 'cpu-short'
//process.memory = '100Gb'
//process.INTEGRATESAMPLES.memory = '200G'
process.clusterOptions = '--cpus-per-task 10 --mem 200G'
process.time = '6h'
workDir = './work'
}
}
manifest {
name = 'STITCH'
author = 'Yuanhang Liu'
description = 'A nextflow pipeline for scRNA-seq and Visium data analysis'
version = '1.0.0'
}