-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpreprocess.py
executable file
·246 lines (211 loc) · 8.31 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
from utils import constants
from utils.tools import load_vocab
import os
from math import inf, ceil
import torch
from torch import LongTensor, FloatTensor
from torch.utils.data import TensorDataset, DataLoader
import random
import pickle
from tqdm import tqdm
from copy import deepcopy
from utils.penalty import cal_penalty
from utils.args import get_preprocess_config
def data_process(file, word2index, split_sent):
'''
Change word to index.
'''
def prepare_sequence(seq):
return list(map(lambda word: word2index[constants.UNK_WORD]
if word2index.get(word) is None else word2index[word], seq))
if split_sent:
with open(file, 'r', encoding='utf-8') as f:
data = [[seq.strip().split() for seq in line.strip('\n').lower().split('\t')]
for line in f.readlines()]
return [[prepare_sequence(seq) for seq in line] for line in tqdm(data)]
else:
with open(file, 'r', encoding='utf-8') as f:
data = [line.strip('\n').strip(' ').replace('\t', ' ').lower().split()
for line in f.readlines()]
return [prepare_sequence(line) for line in tqdm(data)]
def graph_process(file):
with open(file, 'r') as f:
graph = [[float(num) for num in line.strip('\n').strip().split()]
for line in f.readlines()]
return graph
def key_func(x):
max_src_len = max([len(seq) for seq in x[0]]) * len(x[0])
if len(x) > 2:
return max(max_src_len, len(x[2]))
else:
return max_src_len
def sort_data(data):
return [(index, value) for index, value in sorted(list(enumerate(data)),
key=lambda x: key_func(x[1]), reverse=True)]
class data_loader:
def __init__(self, source, graph, target=None, penalty=None,
PAD_index=0, BOS_index=None, EOS_index=None):
self.source = source
self.graph = graph
self.train_flag = False
if target is not None:
self.train_flag = True
self.target_input = []
self.target_output = []
self.penalty = penalty
for line in target:
self.target_input.append([BOS_index] + line)
self.target_output.append(line + [EOS_index])
self.PAD_index = PAD_index
self.process_flag = True
def _get_tokens(self, shuffle, args):
if self.train_flag:
assert len(args.gram_penalty) == 4
self.penalty = avg_penalty(self.penalty, args.gram_penalty)
if self.process_flag:
if self.train_flag:
data = list(zip(self.source, self.graph, self.target_input, self.target_output, self.penalty))
src_index, data = zip(*sort_data(data))
self.source, self.graph, self.target_input, self.target_output, self.penalty = zip(*data)
else:
data = list(zip(self.source, self.graph))
self.rank, data = zip(*sort_data(data))
self.source, self.graph = zip(*data)
self.process_flag = False
st = 0
total_len = len(self.source)
index_pair = []
while st < total_len:
if self.train_flag:
max_length = key_func([self.source[st], 0, self.target_input[st]])
else:
max_length = key_func([self.source[st]])
ed = min(st + args.max_tokens // max_length, total_len)
if ed == st:
ed += 1
index_pair.append((st, ed))
st = ed
data = []
total_cnt = 0
for (st, ed) in tqdm(index_pair):
graph = (FloatTensor(self.graph[st:ed]) > args.graph_eps).long()
graph_size = int(graph.size(-1) ** 0.5)
graph = graph.view(ed - st, graph_size, graph_size)
for i in range(ed - st):
for j in range(graph_size):
graph[i][j][j] = 0
for g in graph:
for i in range(graph_size):
flag = True
for j in range(graph_size):
if (g[i][j] != 0 or g[j][i] != 0):
flag = False
break
if flag:
total_cnt += 1
# graph += torch.eye(graph_size).view(1, graph_size, graph_size).long()
# graph = (graph != 0).long()
if self.train_flag:
target_output = LongTensor(pad_batch(self.target_output[st:ed], self.PAD_index, dim=2))
penalty = FloatTensor(self.penalty[st:ed])
if penalty.size(1) >= target_output.size(1):
penalty = penalty[:, :target_output.size(1)]
else:
length = target_output.size(1) - penalty.size(1)
penalty = torch.cat((penalty, torch.ones(penalty.size(0), length)), dim=-1)
data.append((LongTensor(pad_batch(self.source[st:ed], self.PAD_index, dim=3)), graph,
LongTensor(pad_batch(self.target_input[st:ed], self.PAD_index, dim=2)),
target_output, penalty))
else:
data.append((LongTensor(pad_batch(self.source[st:ed], self.PAD_index, dim=3)), graph))
print("Ioslated Node: %d" % total_cnt)
if shuffle:
random.shuffle(data)
return data
def restore_rank(self, data):
rank_data = []
rank = [(index, value) for index, value in
sorted(list(enumerate(self.rank)), key=lambda x: x[1], reverse=False)]
self.rank, _ = zip(*rank)
for index in self.rank:
rank_data.append(data[index])
return rank_data
def set_param(self, shuffle, args, train_flag=True, seed=None):
self.train_flag = train_flag
if seed is not None:
random.seed(seed)
if args.max_tokens is not None:
self.index = 0
return self._get_tokens(shuffle, args), 1
else:
self.st_index = 0
self.ed_index = 1
return self._get_batchs, self.batch_size
def pad_batch(batch, pad_index, dim):
assert dim == 2 or dim == 3
if dim == 2:
max_len = max([len(seq) for seq in batch])
return [list(seq) + [pad_index] * (max_len - len(seq)) for seq in batch]
else:
max_len = max([len(seq) for line in batch for seq in line])
return [[list(seq) + [pad_index] * (max_len - len(seq)) for seq in line] for line in batch]
def save_data_loader(dataloader, save_file):
save_path = os.path.join(*os.path.split(save_file)[:-1])
if not os.path.exists(save_path):
os.makedirs(save_path)
with open(save_file, 'wb') as f:
pickle.dump(dataloader, f)
def avg_penalty(penalty, val):
for i in range(len(penalty[0])):
for j in range(len(penalty[0][0])):
tmp = 0
for k in range(len(val)):
tmp += penalty[k][i][j] * val[k]
penalty[0][i][j] = tmp + 1
return penalty[0]
def preprocess():
args = get_preprocess_config()
word2index, _ = load_vocab(args.vocab)
print("===> Create source dataset.")
source = data_process(
file=args.source,
word2index=word2index,
split_sent=True
)
target = None
src_line = None
penalty = None
if args.target is not None:
print("===> Create target dataset.")
target = data_process(
file=args.target,
word2index=word2index,
split_sent=False
)
print("===> Create penalty coefficient.")
src_line = data_process(
file=args.source,
word2index=word2index,
split_sent=False
)
penalty = cal_penalty(src_line, target)
print("===> Create graph dataset.")
graph = graph_process(
file=args.graph
)
assert len(source) == len(graph)
if target:
assert len(source) == len(target)
dataloader = data_loader(
source=source,
penalty=penalty,
target=target,
graph=graph,
PAD_index=constants.PAD_index,
BOS_index=constants.BOS_index,
EOS_index=constants.EOS_index
)
save_data_loader(dataloader, args.save_file)
if __name__ == '__main__':
preprocess()