1
1
ARG BASE_TAG=staging
2
- FROM nvidia/cuda:11.4.2 -cudnn8-devel-ubuntu18.04 AS nvidia
2
+ FROM nvidia/cuda:11.7.0 -cudnn8-devel-ubuntu18.04 AS nvidia
3
3
FROM gcr.io/kaggle-images/rstats:${BASE_TAG}
4
4
ARG ncpus=1
5
5
@@ -10,11 +10,12 @@ COPY --from=nvidia /etc/apt/sources.list.d/cuda.list /etc/apt/sources.list.d/
10
10
COPY --from=nvidia /etc/apt/trusted.gpg /etc/apt/trusted.gpg.d/cuda.gpg
11
11
12
12
ENV CUDA_MAJOR_VERSION=11
13
- ENV CUDA_MINOR_VERSION=4
14
- ENV CUDA_PATCH_VERSION=2
13
+ ENV CUDA_MINOR_VERSION=7
14
+ ENV CUDA_PATCH_VERSION=0
15
15
ENV CUDA_VERSION=$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION.$CUDA_PATCH_VERSION
16
16
ENV CUDA_PKG_VERSION=$CUDA_MAJOR_VERSION-$CUDA_MINOR_VERSION
17
- ENV CUDNN_VERSION=8.2.4.15
17
+ ENV CUDNN_VERSION=8.5.0.96
18
+ ENV NCCL_VERSION=2.13.4-1
18
19
LABEL com.nvidia.volumes.needed="nvidia_driver"
19
20
LABEL com.nvidia.cuda.version="${CUDA_VERSION}"
20
21
LABEL com.nvidia.cudnn.version="${CUDNN_VERSION}"
@@ -41,8 +42,8 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
41
42
libcudnn8-dev=$CUDNN_VERSION-1+cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION \
42
43
libcublas-$CUDA_PKG_VERSION \
43
44
libcublas-dev-$CUDA_PKG_VERSION \
44
- libnccl2=2.11.4-1 +cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION \
45
- libnccl-dev=2.11.4-1 +cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION && \
45
+ libnccl2=$NCCL_VERSION +cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION \
46
+ libnccl-dev=$NCCL_VERSION +cuda$CUDA_MAJOR_VERSION.$CUDA_MINOR_VERSION && \
46
47
/tmp/clean-layer.sh
47
48
48
49
ENV CUDA_HOME=/usr/local/cuda
@@ -55,7 +56,7 @@ ENV CUDA_HOME=/usr/local/cuda
55
56
ADD ldpaths $R_HOME/etc/ldpaths
56
57
57
58
# Install tensorflow with GPU support
58
- RUN R -e 'keras::install_keras(tensorflow = "2.6- gpu")' && \
59
+ RUN R -e 'keras::install_keras(tensorflow = "gpu")' && \
59
60
rm -rf /tmp/tensorflow_gpu && \
60
61
/tmp/clean-layer.sh
61
62
@@ -70,8 +71,8 @@ RUN CPATH=/usr/local/cuda/targets/x86_64-linux/include install2.r --error --ncpu
70
71
71
72
# Torch: install the full package upfront otherwise it will be installed on loading the package which doesn't work for kernels
72
73
# without internet (competitions for example). It will detect CUDA and install the proper version.
73
- # Make Torch think we use CUDA 11.3 (https://github.com/mlverse/torch/issues/807)
74
- ENV CUDA=11.3
74
+ # Make Torch think we use CUDA 11.8 (https://github.com/mlverse/torch/issues/807)
75
+ ENV CUDA=11.7
75
76
RUN R -e 'install.packages("torch")'
76
77
RUN R -e 'library(torch); install_torch()'
77
78
0 commit comments