forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
565 lines (497 loc) · 16.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
"""RGCN layer implementation"""
from collections import defaultdict
import dgl
import dgl.function as fn
import dgl.nn as dglnn
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import tqdm
class RelGraphConvLayer(nn.Module):
r"""Relational graph convolution layer.
Parameters
----------
in_feat : int
Input feature size.
out_feat : int
Output feature size.
rel_names : list[str]
Relation names.
num_bases : int, optional
Number of bases. If is none, use number of relations. Default: None.
weight : bool, optional
True if a linear layer is applied after message passing. Default: True
bias : bool, optional
True if bias is added. Default: True
activation : callable, optional
Activation function. Default: None
self_loop : bool, optional
True to include self loop message. Default: False
dropout : float, optional
Dropout rate. Default: 0.0
"""
def __init__(
self,
in_feat,
out_feat,
rel_names,
num_bases,
*,
weight=True,
bias=True,
activation=None,
self_loop=False,
dropout=0.0
):
super(RelGraphConvLayer, self).__init__()
self.in_feat = in_feat
self.out_feat = out_feat
self.rel_names = rel_names
self.num_bases = num_bases
self.bias = bias
self.activation = activation
self.self_loop = self_loop
self.conv = dglnn.HeteroGraphConv(
{
rel: dglnn.GraphConv(
in_feat, out_feat, norm="right", weight=False, bias=False
)
for rel in rel_names
}
)
self.use_weight = weight
self.use_basis = num_bases < len(self.rel_names) and weight
if self.use_weight:
if self.use_basis:
self.basis = dglnn.WeightBasis(
(in_feat, out_feat), num_bases, len(self.rel_names)
)
else:
self.weight = nn.Parameter(
th.Tensor(len(self.rel_names), in_feat, out_feat)
)
nn.init.xavier_uniform_(
self.weight, gain=nn.init.calculate_gain("relu")
)
# bias
if bias:
self.h_bias = nn.Parameter(th.Tensor(out_feat))
nn.init.zeros_(self.h_bias)
# weight for self loop
if self.self_loop:
self.loop_weight = nn.Parameter(th.Tensor(in_feat, out_feat))
nn.init.xavier_uniform_(
self.loop_weight, gain=nn.init.calculate_gain("relu")
)
self.dropout = nn.Dropout(dropout)
def forward(self, g, inputs):
"""Forward computation
Parameters
----------
g : DGLGraph
Input graph.
inputs : dict[str, torch.Tensor]
Node feature for each node type.
Returns
-------
dict[str, torch.Tensor]
New node features for each node type.
"""
g = g.local_var()
if self.use_weight:
weight = self.basis() if self.use_basis else self.weight
wdict = {
self.rel_names[i]: {"weight": w.squeeze(0)}
for i, w in enumerate(th.split(weight, 1, dim=0))
}
else:
wdict = {}
if g.is_block:
inputs_src = inputs
inputs_dst = {
k: v[: g.number_of_dst_nodes(k)] for k, v in inputs.items()
}
else:
inputs_src = inputs_dst = inputs
hs = self.conv(g, inputs, mod_kwargs=wdict)
def _apply(ntype, h):
if self.self_loop:
h = h + th.matmul(inputs_dst[ntype], self.loop_weight)
if self.bias:
h = h + self.h_bias
if self.activation:
h = self.activation(h)
return self.dropout(h)
return {ntype: _apply(ntype, h) for ntype, h in hs.items()}
class RelGraphConvLayerHeteroAPI(nn.Module):
r"""Relational graph convolution layer.
Parameters
----------
in_feat : int
Input feature size.
out_feat : int
Output feature size.
rel_names : list[str]
Relation names.
num_bases : int, optional
Number of bases. If is none, use number of relations. Default: None.
weight : bool, optional
True if a linear layer is applied after message passing. Default: True
bias : bool, optional
True if bias is added. Default: True
activation : callable, optional
Activation function. Default: None
self_loop : bool, optional
True to include self loop message. Default: False
dropout : float, optional
Dropout rate. Default: 0.0
"""
def __init__(
self,
in_feat,
out_feat,
rel_names,
num_bases,
*,
weight=True,
bias=True,
activation=None,
self_loop=False,
dropout=0.0
):
super(RelGraphConvLayerHeteroAPI, self).__init__()
self.in_feat = in_feat
self.out_feat = out_feat
self.rel_names = rel_names
self.num_bases = num_bases
self.bias = bias
self.activation = activation
self.self_loop = self_loop
self.use_weight = weight
self.use_basis = num_bases < len(self.rel_names) and weight
if self.use_weight:
if self.use_basis:
self.basis = dglnn.WeightBasis(
(in_feat, out_feat), num_bases, len(self.rel_names)
)
else:
self.weight = nn.Parameter(
th.Tensor(len(self.rel_names), in_feat, out_feat)
)
nn.init.xavier_uniform_(
self.weight, gain=nn.init.calculate_gain("relu")
)
# bias
if bias:
self.h_bias = nn.Parameter(th.Tensor(out_feat))
nn.init.zeros_(self.h_bias)
# weight for self loop
if self.self_loop:
self.loop_weight = nn.Parameter(th.Tensor(in_feat, out_feat))
nn.init.xavier_uniform_(
self.loop_weight, gain=nn.init.calculate_gain("relu")
)
self.dropout = nn.Dropout(dropout)
def forward(self, g, inputs):
"""Forward computation
Parameters
----------
g : DGLGraph
Input graph.
inputs : dict[str, torch.Tensor]
Node feature for each node type.
Returns
-------
dict[str, torch.Tensor]
New node features for each node type.
"""
g = g.local_var()
if self.use_weight:
weight = self.basis() if self.use_basis else self.weight
wdict = {
self.rel_names[i]: {"weight": w.squeeze(0)}
for i, w in enumerate(th.split(weight, 1, dim=0))
}
else:
wdict = {}
inputs_src = inputs_dst = inputs
for srctype, _, _ in g.canonical_etypes:
g.nodes[srctype].data["h"] = inputs[srctype]
if self.use_weight:
g.apply_edges(fn.copy_u("h", "m"))
m = g.edata["m"]
for rel in g.canonical_etypes:
_, etype, _ = rel
g.edges[rel].data["h*w_r"] = th.matmul(
m[rel], wdict[etype]["weight"]
)
else:
g.apply_edges(fn.copy_u("h", "h*w_r"))
g.update_all(fn.copy_e("h*w_r", "m"), fn.sum("m", "h"))
def _apply(ntype):
h = g.nodes[ntype].data["h"]
if self.self_loop:
h = h + th.matmul(inputs_dst[ntype], self.loop_weight)
if self.bias:
h = h + self.h_bias
if self.activation:
h = self.activation(h)
return self.dropout(h)
return {ntype: _apply(ntype) for ntype in g.dsttypes}
class RelGraphEmbed(nn.Module):
r"""Embedding layer for featureless heterograph."""
def __init__(
self, g, embed_size, embed_name="embed", activation=None, dropout=0.0
):
super(RelGraphEmbed, self).__init__()
self.g = g
self.embed_size = embed_size
self.embed_name = embed_name
self.activation = activation
self.dropout = nn.Dropout(dropout)
# create weight embeddings for each node for each relation
self.embeds = nn.ParameterDict()
for ntype in g.ntypes:
embed = nn.Parameter(th.Tensor(g.num_nodes(ntype), self.embed_size))
nn.init.xavier_uniform_(embed, gain=nn.init.calculate_gain("relu"))
self.embeds[ntype] = embed
def forward(self, block=None):
"""Forward computation
Parameters
----------
block : DGLGraph, optional
If not specified, directly return the full graph with embeddings stored in
:attr:`embed_name`. Otherwise, extract and store the embeddings to the block
graph and return.
Returns
-------
DGLGraph
The block graph fed with embeddings.
"""
return self.embeds
class EntityClassify(nn.Module):
def __init__(
self,
g,
h_dim,
out_dim,
num_bases,
num_hidden_layers=1,
dropout=0,
use_self_loop=False,
):
super(EntityClassify, self).__init__()
self.g = g
self.h_dim = h_dim
self.out_dim = out_dim
self.rel_names = list(set(g.etypes))
self.rel_names.sort()
if num_bases < 0 or num_bases > len(self.rel_names):
self.num_bases = len(self.rel_names)
else:
self.num_bases = num_bases
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.use_self_loop = use_self_loop
self.embed_layer = RelGraphEmbed(g, self.h_dim)
self.layers = nn.ModuleList()
# i2h
self.layers.append(
RelGraphConvLayer(
self.h_dim,
self.h_dim,
self.rel_names,
self.num_bases,
activation=F.relu,
self_loop=self.use_self_loop,
dropout=self.dropout,
weight=False,
)
)
# h2h
for i in range(self.num_hidden_layers):
self.layers.append(
RelGraphConvLayer(
self.h_dim,
self.h_dim,
self.rel_names,
self.num_bases,
activation=F.relu,
self_loop=self.use_self_loop,
dropout=self.dropout,
)
)
# h2o
self.layers.append(
RelGraphConvLayer(
self.h_dim,
self.out_dim,
self.rel_names,
self.num_bases,
activation=None,
self_loop=self.use_self_loop,
)
)
def forward(self, h=None, blocks=None):
if h is None:
# full graph training
h = self.embed_layer()
if blocks is None:
# full graph training
for layer in self.layers:
h = layer(self.g, h)
else:
# minibatch training
for layer, block in zip(self.layers, blocks):
h = layer(block, h)
return h
def inference(self, g, batch_size, device, num_workers, x=None):
"""Minibatch inference of final representation over all node types.
***NOTE***
For node classification, the model is trained to predict on only one node type's
label. Therefore, only that type's final representation is meaningful.
"""
if x is None:
x = self.embed_layer()
for l, layer in enumerate(self.layers):
y = {
k: th.zeros(
g.num_nodes(k),
self.h_dim if l != len(self.layers) - 1 else self.out_dim,
)
for k in g.ntypes
}
sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1)
dataloader = dgl.dataloading.DataLoader(
g,
{k: th.arange(g.num_nodes(k)) for k in g.ntypes},
sampler,
batch_size=batch_size,
shuffle=True,
drop_last=False,
num_workers=num_workers,
)
for input_nodes, output_nodes, blocks in tqdm.tqdm(dataloader):
block = blocks[0].to(device)
h = {
k: x[k][input_nodes[k]].to(device)
for k in input_nodes.keys()
}
h = layer(block, h)
for k in output_nodes.keys():
y[k][output_nodes[k]] = h[k].cpu()
x = y
return y
class EntityClassify_HeteroAPI(nn.Module):
def __init__(
self,
g,
h_dim,
out_dim,
num_bases,
num_hidden_layers=1,
dropout=0,
use_self_loop=False,
):
super(EntityClassify_HeteroAPI, self).__init__()
self.g = g
self.h_dim = h_dim
self.out_dim = out_dim
self.rel_names = list(set(g.etypes))
self.rel_names.sort()
if num_bases < 0 or num_bases > len(self.rel_names):
self.num_bases = len(self.rel_names)
else:
self.num_bases = num_bases
self.num_hidden_layers = num_hidden_layers
self.dropout = dropout
self.use_self_loop = use_self_loop
self.embed_layer = RelGraphEmbed(g, self.h_dim)
self.layers = nn.ModuleList()
# i2h
self.layers.append(
RelGraphConvLayerHeteroAPI(
self.h_dim,
self.h_dim,
self.rel_names,
self.num_bases,
activation=F.relu,
self_loop=self.use_self_loop,
dropout=self.dropout,
weight=False,
)
)
# h2h
for i in range(self.num_hidden_layers):
self.layers.append(
RelGraphConvLayerHeteroAPI(
self.h_dim,
self.h_dim,
self.rel_names,
self.num_bases,
activation=F.relu,
self_loop=self.use_self_loop,
dropout=self.dropout,
)
)
# h2o
self.layers.append(
RelGraphConvLayerHeteroAPI(
self.h_dim,
self.out_dim,
self.rel_names,
self.num_bases,
activation=None,
self_loop=self.use_self_loop,
)
)
def forward(self, h=None, blocks=None):
if h is None:
# full graph training
h = self.embed_layer()
if blocks is None:
# full graph training
for layer in self.layers:
h = layer(self.g, h)
else:
# minibatch training
for layer, block in zip(self.layers, blocks):
h = layer(block, h)
return h
def inference(self, g, batch_size, device, num_workers, x=None):
"""Minibatch inference of final representation over all node types.
***NOTE***
For node classification, the model is trained to predict on only one node type's
label. Therefore, only that type's final representation is meaningful.
"""
if x is None:
x = self.embed_layer()
for l, layer in enumerate(self.layers):
y = {
k: th.zeros(
g.num_nodes(k),
self.h_dim if l != len(self.layers) - 1 else self.out_dim,
)
for k in g.ntypes
}
sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1)
dataloader = dgl.dataloading.DataLoader(
g,
{k: th.arange(g.num_nodes(k)) for k in g.ntypes},
sampler,
batch_size=batch_size,
shuffle=True,
drop_last=False,
num_workers=num_workers,
)
for input_nodes, output_nodes, blocks in tqdm.tqdm(dataloader):
block = blocks[0].to(device)
h = {
k: x[k][input_nodes[k]].to(device)
for k in input_nodes.keys()
}
h = layer(block, h)
for k in h.keys():
y[k][output_nodes[k]] = h[k].cpu()
x = y
return y