forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
293 lines (248 loc) · 8.55 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl.geometry import farthest_point_sampler
"""
Part of the code are adapted from
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
"""
def square_distance(src, dst):
"""
Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
"""
B, N, _ = src.shape
_, M, _ = dst.shape
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
dist += torch.sum(src**2, -1).view(B, N, 1)
dist += torch.sum(dst**2, -1).view(B, 1, M)
return dist
def index_points(points, idx):
"""
Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
"""
device = points.device
B = points.shape[0]
view_shape = list(idx.shape)
view_shape[1:] = [1] * (len(view_shape) - 1)
repeat_shape = list(idx.shape)
repeat_shape[0] = 1
batch_indices = (
torch.arange(B, dtype=torch.long)
.to(device)
.view(view_shape)
.repeat(repeat_shape)
)
new_points = points[batch_indices, idx, :]
return new_points
class KNearNeighbors(nn.Module):
"""
Find the k nearest neighbors
"""
def __init__(self, n_neighbor):
super(KNearNeighbors, self).__init__()
self.n_neighbor = n_neighbor
def forward(self, pos, centroids):
"""
Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
"""
center_pos = index_points(pos, centroids)
sqrdists = square_distance(center_pos, pos)
group_idx = sqrdists.argsort(dim=-1)[:, :, : self.n_neighbor]
return group_idx
class KNNGraphBuilder(nn.Module):
"""
Build NN graph
"""
def __init__(self, n_neighbor):
super(KNNGraphBuilder, self).__init__()
self.n_neighbor = n_neighbor
self.knn = KNearNeighbors(n_neighbor)
def forward(self, pos, centroids, feat=None):
dev = pos.device
group_idx = self.knn(pos, centroids)
B, N, _ = pos.shape
glist = []
for i in range(B):
center = torch.zeros((N)).to(dev)
center[centroids[i]] = 1
src = group_idx[i].contiguous().view(-1)
dst = (
centroids[i]
.view(-1, 1)
.repeat(
1, min(self.n_neighbor, src.shape[0] // centroids.shape[1])
)
.view(-1)
)
unified = torch.cat([src, dst])
uniq, inv_idx = torch.unique(unified, return_inverse=True)
src_idx = inv_idx[: src.shape[0]]
dst_idx = inv_idx[src.shape[0] :]
g = dgl.graph((src_idx, dst_idx))
g.ndata["pos"] = pos[i][uniq]
g.ndata["center"] = center[uniq]
if feat is not None:
g.ndata["feat"] = feat[i][uniq]
glist.append(g)
bg = dgl.batch(glist)
return bg
class RelativePositionMessage(nn.Module):
"""
Compute the input feature from neighbors
"""
def __init__(self, n_neighbor):
super(RelativePositionMessage, self).__init__()
self.n_neighbor = n_neighbor
def forward(self, edges):
pos = edges.src["pos"] - edges.dst["pos"]
if "feat" in edges.src:
res = torch.cat([pos, edges.src["feat"]], 1)
else:
res = pos
return {"agg_feat": res}
class KNNConv(nn.Module):
"""
Feature aggregation
"""
def __init__(self, sizes, batch_size):
super(KNNConv, self).__init__()
self.batch_size = batch_size
self.conv = nn.ModuleList()
self.bn = nn.ModuleList()
for i in range(1, len(sizes)):
self.conv.append(nn.Conv2d(sizes[i - 1], sizes[i], 1))
self.bn.append(nn.BatchNorm2d(sizes[i]))
def forward(self, nodes):
shape = nodes.mailbox["agg_feat"].shape
h = (
nodes.mailbox["agg_feat"]
.view(self.batch_size, -1, shape[1], shape[2])
.permute(0, 3, 2, 1)
)
for conv, bn in zip(self.conv, self.bn):
h = conv(h)
h = bn(h)
h = F.relu(h)
h = torch.max(h, 2)[0]
feat_dim = h.shape[1]
h = h.permute(0, 2, 1).reshape(-1, feat_dim)
return {"new_feat": h}
def group_all(self, pos, feat):
"""
Feature aggregation and pooling for the non-sampling layer
"""
if feat is not None:
h = torch.cat([pos, feat], 2)
else:
h = pos
B, N, D = h.shape
_, _, C = pos.shape
new_pos = torch.zeros(B, 1, C)
h = h.permute(0, 2, 1).view(B, -1, N, 1)
for conv, bn in zip(self.conv, self.bn):
h = conv(h)
h = bn(h)
h = F.relu(h)
h = torch.max(h[:, :, :, 0], 2)[0] # [B,D]
return new_pos, h
class TransitionDown(nn.Module):
"""
The Transition Down Module
"""
def __init__(self, n_points, batch_size, mlp_sizes, n_neighbors=64):
super(TransitionDown, self).__init__()
self.n_points = n_points
self.frnn_graph = KNNGraphBuilder(n_neighbors)
self.message = RelativePositionMessage(n_neighbors)
self.conv = KNNConv(mlp_sizes, batch_size)
self.batch_size = batch_size
def forward(self, pos, feat):
centroids = farthest_point_sampler(pos, self.n_points)
g = self.frnn_graph(pos, centroids, feat)
g.update_all(self.message, self.conv)
mask = g.ndata["center"] == 1
pos_dim = g.ndata["pos"].shape[-1]
feat_dim = g.ndata["new_feat"].shape[-1]
pos_res = g.ndata["pos"][mask].view(self.batch_size, -1, pos_dim)
feat_res = g.ndata["new_feat"][mask].view(self.batch_size, -1, feat_dim)
return pos_res, feat_res
class FeaturePropagation(nn.Module):
"""
The FeaturePropagation Layer
"""
def __init__(self, input_dims, sizes):
super(FeaturePropagation, self).__init__()
self.convs = nn.ModuleList()
self.bns = nn.ModuleList()
sizes = [input_dims] + sizes
for i in range(1, len(sizes)):
self.convs.append(nn.Conv1d(sizes[i - 1], sizes[i], 1))
self.bns.append(nn.BatchNorm1d(sizes[i]))
def forward(self, x1, x2, feat1, feat2):
"""
Adapted from https://github.com/yanx27/Pointnet_Pointnet2_pytorch
Input:
x1: input points position data, [B, N, C]
x2: sampled input points position data, [B, S, C]
feat1: input points data, [B, N, D]
feat2: input points data, [B, S, D]
Return:
new_feat: upsampled points data, [B, D', N]
"""
B, N, C = x1.shape
_, S, _ = x2.shape
if S == 1:
interpolated_feat = feat2.repeat(1, N, 1)
else:
dists = square_distance(x1, x2)
dists, idx = dists.sort(dim=-1)
dists, idx = dists[:, :, :3], idx[:, :, :3] # [B, N, 3]
dist_recip = 1.0 / (dists + 1e-8)
norm = torch.sum(dist_recip, dim=2, keepdim=True)
weight = dist_recip / norm
interpolated_feat = torch.sum(
index_points(feat2, idx) * weight.view(B, N, 3, 1), dim=2
)
if feat1 is not None:
new_feat = torch.cat([feat1, interpolated_feat], dim=-1)
else:
new_feat = interpolated_feat
new_feat = new_feat.permute(0, 2, 1) # [B, D, S]
for i, conv in enumerate(self.convs):
bn = self.bns[i]
new_feat = F.relu(bn(conv(new_feat)))
return new_feat
class SwapAxes(nn.Module):
def __init__(self, dim1=1, dim2=2):
super(SwapAxes, self).__init__()
self.dim1 = dim1
self.dim2 = dim2
def forward(self, x):
return x.transpose(self.dim1, self.dim2)
class TransitionUp(nn.Module):
"""
The Transition Up Module
"""
def __init__(self, dim1, dim2, dim_out):
super(TransitionUp, self).__init__()
self.fc1 = nn.Sequential(
nn.Linear(dim1, dim_out),
SwapAxes(),
nn.BatchNorm1d(dim_out), # TODO
SwapAxes(),
nn.ReLU(),
)
self.fc2 = nn.Sequential(
nn.Linear(dim2, dim_out),
SwapAxes(),
nn.BatchNorm1d(dim_out), # TODO
SwapAxes(),
nn.ReLU(),
)
self.fp = FeaturePropagation(-1, [])
def forward(self, pos1, feat1, pos2, feat2):
h1 = self.fc1(feat1)
h2 = self.fc2(feat2)
h1 = self.fp(pos2, pos1, None, h1).transpose(1, 2)
return h1 + h2